Spark-TTS-0.5B / transformer.py
mrfakename's picture
Upload 17 files
9abfb86 verified
raw
history blame
12.2 kB
from typing import Optional, Tuple, MutableMapping
from typing import Union
import math
from contextlib import nullcontext
import torch
import torch as T
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.nn.attention import SDPBackend
from einops import rearrange
from utils import si_module, default, exists, load_ckpt
CACHE_FILL_VALUE = -1
def get_cache_len(cache: Optional[Tensor]) -> int:
"""
cache: (batch, seq_len, 2, kv_heads, head_dim)
"""
if cache is None:
return 0
nonzeros = T.any(cache.flatten(2) != CACHE_FILL_VALUE, dim=-1)
length = nonzeros.sum(dim=-1).int()
assert T.all(length == length[0])
return length[0]
def rotate_half(x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(x, cos, sin, offset: int = 0):
assert (
cos.shape[1] >= offset + x.shape[1]
), f"Offset and/or input sequence is too large,\
\n offset: {offset}, seq_len: {x.shape[1]}, max: {cos.shape[1]}"
cos_out = cos[:, offset : offset + x.shape[1], :, :]
sin_out = sin[:, offset : offset + x.shape[1], :, :]
return (x * cos_out) + (rotate_half(x) * sin_out)
# Adapted from https://github.com/foundation-model-stack/foundation-model-stack
class ShapeRotator:
def __init__(
self,
dim: int,
end: int,
theta: float = 10_000,
):
super().__init__()
self.dim = dim
self.ratio = theta
self.cached_freqs: MutableMapping[int, MutableMapping[int, torch.Tensor]] = {}
self.max_seq_len_cached: MutableMapping[int, int] = {}
self.ntk_scaling = False
self.max_seq_len = end
def compute_freqs_cis(self, device, max_seq_len=None):
alpha = 1
dev_idx = device.index
max_seq_len = default(max_seq_len, self.max_seq_len)
if dev_idx not in self.cached_freqs:
self.cached_freqs[dev_idx] = {}
if dev_idx not in self.max_seq_len_cached:
self.max_seq_len_cached[dev_idx] = 0
if self.max_seq_len_cached[dev_idx] > 0:
return 1
max_seq_len = max(max_seq_len, self.max_seq_len)
if (
1 in self.cached_freqs[dev_idx]
and max_seq_len <= self.max_seq_len_cached[dev_idx]
):
return 1
ratio = self.ratio
dim = self.dim
freqs = 1.0 / (ratio ** (torch.arange(0, dim, 2, device=device).float() / dim))
t = torch.arange(max_seq_len, device=device, dtype=freqs.dtype)
freqs = torch.einsum("i,j->ij", t, freqs)
emb = torch.cat((freqs, freqs), dim=-1).to(device)
cos_to_cache = emb.cos()[None, :, None, :]
sin_to_cache = emb.sin()[None, :, None, :]
self.max_seq_len_cached[dev_idx] = max_seq_len
self.cached_freqs[dev_idx][alpha] = torch.stack(
[
cos_to_cache,
sin_to_cache,
],
dim=-1,
)
return alpha
def rotate(
self,
q: Tensor,
k: Tensor,
offset: int = 0,
) -> Tuple[Tensor, Tensor]:
"""
Args
----
q : torch.Tensor
Embedded query tensor, expected size is B x S x H x Eh
k : torch.Tensor
Embedded query tensor, expected size is B x S x H x Eh
"""
assert len(q.size()) == 4
assert len(k.size()) == 4
seq_len = self.max_seq_len
alpha = self.compute_freqs_cis(q.device, seq_len)
freqs = self.cached_freqs[q.device.index][alpha]
freqs = freqs.float() # 1 L D/2 2 2
q_out = apply_rotary_pos_emb(q, freqs[..., 0], freqs[..., 1], offset=offset).type_as(q)
k_out = apply_rotary_pos_emb(k, freqs[..., 0], freqs[..., 1], offset=offset).type_as(k)
return q_out.view_as(q), k_out.view_as(k)
class Linear(nn.Linear):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs, bias=False)
class Norm(nn.Module):
def __init__(self,
dim: int,
eps: float = 1e-5,) -> None:
super().__init__()
self.eps = eps
self.weight = nn.Parameter(T.ones((dim,)))
def forward(self, input: Tensor) -> Tensor:
return F.layer_norm(input, (self.weight.shape[0],), weight=self.weight, bias=None, eps=self.eps)
class FFNN(nn.Module):
def __init__(self,
dim: int,
expand_dim: int = None,):
super().__init__()
expand_dim = default(expand_dim, 256 * ((int(2 * 4 * dim / 3) + 256 - 1) // 256))
self.dim = dim
self.expand_dim = expand_dim
self.gateup_proj = Linear(dim, 2*expand_dim)
self.down_proj = Linear(expand_dim, dim)
def forward(self, x):
gate, up = self.gateup_proj(x).chunk(2, dim=-1)
return self.down_proj(up * F.silu(gate))
class GQA(nn.Module):
def __init__(self,
dim: int,
n_head: int,
shape_rotator: ShapeRotator,
kv_heads: Optional[int] = None,
eps: float = 1e-5,
causal: bool = True,):
super().__init__()
self.n_heads = n_head
self.kv_heads = default(kv_heads, n_head)
self.head_dim = dim // n_head
self.causal = causal
self.proj_qkv = Linear(dim, self.head_dim*(n_head+2*self.kv_heads))
self.norm_q = Norm(self.head_dim*n_head, eps=eps)
self.norm_k = Norm(self.head_dim*self.kv_heads, eps=eps)
self.attn_out = Linear(dim, dim)
self.shape_rotator = shape_rotator
def _sdpa(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
k = k.repeat_interleave(self.n_heads // self.kv_heads, dim=2)
v = v.repeat_interleave(self.n_heads // self.kv_heads, dim=2)
with nn.attention.sdpa_kernel(SDPBackend.FLASH_ATTENTION) if k.device.type == 'cuda' else nullcontext():
x = F.scaled_dot_product_attention(
q.transpose(1, 2),
k.transpose(1, 2),
v.transpose(1, 2),
is_causal=False if (q.size(1) != k.size(1)) else self.causal,
)
x = x.transpose(1, 2).contiguous()
return x
def _attend(self, q: Tensor, k: Tensor, v: Tensor, kv_cache: Optional[Tensor] = None,):
cache_len = get_cache_len(kv_cache)
q, k = self.shape_rotator.rotate(q, k, offset=cache_len)
if exists(kv_cache):
k = T.cat([kv_cache[:, :cache_len, 0], k], dim=1)
v = T.cat([kv_cache[:, :cache_len, 1], v], dim=1)
kv_cache[:, :k.size(1), 0] = k
kv_cache[:, :v.size(1), 1] = v
x = self._sdpa(q, k, v)
return self.attn_out(rearrange(x, 'b s h d -> b s (h d)'))
def _project(self, x):
full_q, full_k, full_v = self.proj_qkv(x).chunk(3, dim=-1)
normed_full_q = self.norm_q(full_q).to(full_q.dtype)
normed_full_k = self.norm_k(full_k).to(full_k.dtype)
q = rearrange(normed_full_q, 'b s (h d) -> b s h d', h=self.n_heads)
k = rearrange(normed_full_k, 'b s (h d) -> b s h d', h=self.kv_heads)
v = rearrange(full_v, 'b s (h d) -> b s h d', h=self.kv_heads)
return q, k, v
def forward(self,
x: Tensor,
kv: Optional[Tensor] = None,):
"""
x: (B, S, D)
kv: (B, S, H, D)
"""
q, k, v = self._project(x)
return self._attend(q, k, v, kv_cache=kv)
class PreNormAttn(nn.Module):
def __init__(self,
dim: int,
n_head: int,
shape_rotator: ShapeRotator,
kv_heads: Optional[int] = None,
eps: float = 1e-5,
causal: bool = True,):
super().__init__()
self.attn_norm = Norm(dim, eps=eps)
self.attn = GQA(dim, n_head, shape_rotator, kv_heads, eps=eps, causal=causal)
def forward(self, x: Tensor, kv: Optional[Tensor] = None) -> Tensor:
"""
x: (B, S, D)
kv: (B, S, H, D)
"""
return x + self.attn(self.attn_norm(x), kv)
class PreNormFFNN(nn.Module):
def __init__(self,
dim: int,
ff_dim: int,
eps: float = 1e-5,):
super().__init__()
self.ffnn_norm = Norm(dim, eps=eps)
self.ffnn = FFNN(dim, ff_dim)
def forward(self, x: Tensor) -> Tensor:
return x + self.ffnn(self.ffnn_norm(x))
class Block(nn.Module):
def __init__(self,
dim: int,
layer_id: int = 0,
n_head: int = 16,
kv_heads: Optional[int] = None,
ff_dim: Optional[int] = None,
eps: float = 1e-5,
causal: bool = True,
shape_rotator: ShapeRotator = None):
super().__init__()
self.attn = PreNormAttn(dim, n_head, shape_rotator, kv_heads, eps=eps, causal=causal)
self.ffnn = PreNormFFNN(dim, ff_dim, eps=eps)
self.dim = dim
self.layer_id = layer_id
self.head_dim = dim // n_head
self.expand_dim = self.ffnn.ffnn.expand_dim
self.reset_parameters()
def reset_parameters(self):
std = 1.0 / math.sqrt(self.dim)
nn.init.trunc_normal_(self.ffnn.ffnn.gateup_proj.weight, std=std, a=-3 * std, b=3 * std)
nn.init.trunc_normal_(self.attn.attn.proj_qkv.weight, std=std, a=-3 * std, b=3 * std)
nn.init.trunc_normal_(self.attn.attn.attn_out.weight, std=std, a=-3 * std, b=3 * std)
xstd = 1.0 / math.sqrt(self.expand_dim)
nn.init.trunc_normal_(self.ffnn.ffnn.down_proj.weight, std=xstd, a=-3 * xstd, b=3 * xstd)
def forward(self, x: Tensor, kv: Optional[Tensor] = None) -> Tensor:
"""
x: (B, S, D)
kv: (B, S, H, D)
"""
h = self.attn(x, kv)
out = self.ffnn(h)
return out
class GPTOutput(nn.Module):
def __init__(self, dim, vocab_size):
super().__init__()
self.dim = dim
self.norm = Norm(dim)
self.output = Linear(dim, vocab_size)
self.reset_parameters()
def reset_parameters(self):
std = 1.0 / math.sqrt(self.dim**2)
nn.init.trunc_normal_(self.output.weight, std=std, a=-3 * std, b=3 * std)
def forward(self, x):
return self.output(self.norm(x))
@si_module
class Stack(nn.Module):
class Config:
layers: int
dim: int
seq_len: int
n_head: int = 32
ff_dim: int = None
kv_heads: int = None
eps: float = 1e-5
theta: Union[int, float] = 10_000
causal: bool = True
from_pretrained: Optional[Tuple[str, int]] = None
def __init__(self, c: Config):
super().__init__()
from_pretrained = c.from_pretrained
if exists(from_pretrained):
checkpoint = load_ckpt(c.from_pretrained)
self.shape_rotator = ShapeRotator(c.dim//c.n_head, c.seq_len, theta=c.theta)
self.layers = nn.ModuleList([
Block(
dim=c.dim,
layer_id=l,
n_head=c.n_head,
kv_heads=c.kv_heads,
ff_dim=c.ff_dim,
eps=c.eps,
causal=c.causal,
shape_rotator=self.shape_rotator,
) for l in range(c.layers)
])
kv_heads = c.kv_heads or c.n_head
head_dim = c.dim // c.n_head
cache_shape = [c.layers, c.seq_len, 2, kv_heads, head_dim]
self.cache_shape = cache_shape
self.cache = [None] * c.layers
if exists(from_pretrained):
self.load_state_dict(checkpoint)
def init_cache(self, bsize, device, dtype, length:int=None):
if self.cache_shape is None:
return
cache_shape = self.cache_shape.copy()
cache_shape[1] = length or cache_shape[1]
self.cache = T.full((bsize, *cache_shape), CACHE_FILL_VALUE, device=device, dtype=dtype).transpose(0, 1)
def deinit_cache(self):
self.cache = [None] * len(self.cache)
def forward(self, x: Tensor) -> Tensor:
for l, layer in enumerate(self.layers):
x = layer(x, kv=self.cache[l])
return x