Spaces:
Runtime error
Runtime error
File size: 8,462 Bytes
d93aca0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# Copyright (c) 2025 SparkAudio
# 2025 Xinsheng Wang ([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Description:
This script contains a collection of functions designed to handle various
audio processing.
"""
import random
import soxr
import soundfile
import torch
import torchaudio
import numpy as np
from pathlib import Path
from typing import Tuple
from numpy.lib.stride_tricks import sliding_window_view
def audio_volume_normalize(audio: np.ndarray, coeff: float = 0.2) -> np.ndarray:
"""
Normalize the volume of an audio signal.
Parameters:
audio (numpy array): Input audio signal array.
coeff (float): Target coefficient for normalization, default is 0.2.
Returns:
numpy array: The volume-normalized audio signal.
"""
# Sort the absolute values of the audio signal
temp = np.sort(np.abs(audio))
# If the maximum value is less than 0.1, scale the array to have a maximum of 0.1
if temp[-1] < 0.1:
scaling_factor = max(
temp[-1], 1e-3
) # Prevent division by zero with a small constant
audio = audio / scaling_factor * 0.1
# Filter out values less than 0.01 from temp
temp = temp[temp > 0.01]
L = temp.shape[0] # Length of the filtered array
# If there are fewer than or equal to 10 significant values, return the audio without further processing
if L <= 10:
return audio
# Compute the average of the top 10% to 1% of values in temp
volume = np.mean(temp[int(0.9 * L) : int(0.99 * L)])
# Normalize the audio to the target coefficient level, clamping the scale factor between 0.1 and 10
audio = audio * np.clip(coeff / volume, a_min=0.1, a_max=10)
# Ensure the maximum absolute value in the audio does not exceed 1
max_value = np.max(np.abs(audio))
if max_value > 1:
audio = audio / max_value
return audio
def load_audio(
adfile: Path,
sampling_rate: int = None,
length: int = None,
volume_normalize: bool = False,
segment_duration: int = None,
) -> np.ndarray:
r"""Load audio file with target sampling rate and lsength
Args:
adfile (Path): path to audio file.
sampling_rate (int, optional): target sampling rate. Defaults to None.
length (int, optional): target audio length. Defaults to None.
volume_normalize (bool, optional): whether perform volume normalization. Defaults to False.
segment_duration (int): random select a segment with duration of {segment_duration}s.
Defualt to None which means the whole audio will be used.
Returns:
audio (np.ndarray): audio
"""
audio, sr = soundfile.read(adfile)
if len(audio.shape) > 1:
audio = audio[:, 0]
if sampling_rate is not None and sr != sampling_rate:
audio = soxr.resample(audio, sr, sampling_rate, quality="VHQ")
sr = sampling_rate
if segment_duration is not None:
seg_length = int(sr * segment_duration)
audio = random_select_audio_segment(audio, seg_length)
# Audio volume normalize
if volume_normalize:
audio = audio_volume_normalize(audio)
# check the audio length
if length is not None:
assert abs(audio.shape[0] - length) < 1000
if audio.shape[0] > length:
audio = audio[:length]
else:
audio = np.pad(audio, (0, int(length - audio.shape[0])))
return audio
def random_select_audio_segment(audio: np.ndarray, length: int) -> np.ndarray:
"""get an audio segment given the length
Args:
audio (np.ndarray):
length (int): audio length = sampling_rate * duration
"""
if audio.shape[0] < length:
audio = np.pad(audio, (0, int(length - audio.shape[0])))
start_index = random.randint(0, audio.shape[0] - length)
end_index = int(start_index + length)
return audio[start_index:end_index]
def audio_highpass_filter(audio, sample_rate, highpass_cutoff_freq):
"""apply highpass fileter to audio
Args:
audio (np.ndarray):
sample_rate (ind):
highpass_cutoff_freq (int):
"""
audio = torchaudio.functional.highpass_biquad(
torch.from_numpy(audio), sample_rate, cutoff_freq=highpass_cutoff_freq
)
return audio.numpy()
def stft(
x: torch.Tensor,
fft_size: int,
hop_size: int,
win_length: int,
window: str,
use_complex: bool = False,
) -> torch.Tensor:
"""Perform STFT and convert to magnitude spectrogram.
Args:
x (Tensor): Input signal tensor (B, T).
fft_size (int): FFT size.
hop_size (int): Hop size.
win_length (int): Window length.
window (str): Window function type.
Returns:
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
"""
x_stft = torch.stft(
x, fft_size, hop_size, win_length, window.to(x.device), return_complex=True
)
# clamp is needed to avoid nan or inf
if not use_complex:
return torch.sqrt(
torch.clamp(x_stft.real**2 + x_stft.imag**2, min=1e-7, max=1e3)
).transpose(2, 1)
else:
res = torch.cat([x_stft.real.unsqueeze(1), x_stft.imag.unsqueeze(1)], dim=1)
res = res.transpose(2, 3) # [B, 2, T, F]
return res
def detect_speech_boundaries(
wav: np.ndarray,
sample_rate: int,
window_duration: float = 0.1,
energy_threshold: float = 0.01,
margin_factor: int = 2
) -> Tuple[int, int]:
"""Detect the start and end points of speech in an audio signal using RMS energy.
Args:
wav: Input audio signal array with values in [-1, 1]
sample_rate: Audio sample rate in Hz
window_duration: Duration of detection window in seconds
energy_threshold: RMS energy threshold for speech detection
margin_factor: Factor to determine extra margin around detected boundaries
Returns:
tuple: (start_index, end_index) of speech segment
Raises:
ValueError: If the audio contains only silence
"""
window_size = int(window_duration * sample_rate)
margin = margin_factor * window_size
step_size = window_size // 10
# Create sliding windows using stride tricks to avoid loops
windows = sliding_window_view(wav, window_size)[::step_size]
# Calculate RMS energy for each window
energy = np.sqrt(np.mean(windows ** 2, axis=1))
speech_mask = energy >= energy_threshold
if not np.any(speech_mask):
raise ValueError("No speech detected in audio (only silence)")
start = max(0, np.argmax(speech_mask) * step_size - margin)
end = min(len(wav), (len(speech_mask) - 1 - np.argmax(speech_mask[::-1])) * step_size + margin)
return start, end
def remove_silence_on_both_ends(
wav: np.ndarray,
sample_rate: int,
window_duration: float = 0.1,
volume_threshold: float = 0.01
) -> np.ndarray:
"""Remove silence from both ends of an audio signal.
Args:
wav: Input audio signal array
sample_rate: Audio sample rate in Hz
window_duration: Duration of detection window in seconds
volume_threshold: Amplitude threshold for silence detection
Returns:
np.ndarray: Audio signal with silence removed from both ends
Raises:
ValueError: If the audio contains only silence
"""
start, end = detect_speech_boundaries(
wav,
sample_rate,
window_duration,
volume_threshold
)
return wav[start:end]
def hertz_to_mel(pitch: float) -> float:
"""
Converts a frequency from the Hertz scale to the Mel scale.
Parameters:
- pitch: float or ndarray
Frequency in Hertz.
Returns:
- mel: float or ndarray
Frequency in Mel scale.
"""
mel = 2595 * np.log10(1 + pitch / 700)
return mel |