File size: 9,638 Bytes
3e6810f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ca3adb
3e6810f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ae8754
 
 
1ca3adb
 
1ae8754
1ca3adb
 
 
 
 
 
 
1ae8754
 
1ca3adb
 
 
 
1ae8754
 
 
 
 
 
 
 
 
3e6810f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Copyright 2025 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import torch.nn.functional as F
import whisper
import librosa
import numpy as np
from copy import deepcopy
from tts.utils.text_utils.ph_tone_convert import split_ph_timestamp, split_ph
from tts.utils.audio_utils.align import mel2token_to_dur

''' Graphme to phoneme function '''
def g2p(self, text_inp):
    # prepare inputs
    txt_token = self.g2p_tokenizer('<BOT>' + text_inp + '<BOS>')['input_ids']
    input_ids = torch.LongTensor([txt_token+[145+self.speech_start_idx]]).to(self.device)

    # model forward
    with torch.cuda.amp.autocast(dtype=self.precision, enabled=True):
        outputs = self.g2p_model.generate(input_ids, max_new_tokens=256, do_sample=True, top_k=1, eos_token_id=800+1+self.speech_start_idx)
    
    # process outputs
    ph_tokens = outputs[:, len(txt_token):-1]-self.speech_start_idx
    ph_pred, tone_pred = split_ph(ph_tokens[0])
    ph_pred, tone_pred = ph_pred[None, :].to(self.device), tone_pred[None, :].to(self.device)
    return ph_pred, tone_pred

''' Get phoneme2mel align of prompt speech '''
def align(self, wav):
    with torch.inference_mode():
        # Validate input audio - ensure it's numpy array
        wav_np = np.asarray(wav)
        if np.any(np.isnan(wav_np)) or np.any(np.isinf(wav_np)):
            raise ValueError("Input audio contains NaN or infinite values")
        
        whisper_wav = librosa.resample(wav_np, orig_sr=self.sr, target_sr=16000)
        
        # Validate resampled audio
        if np.any(np.isnan(whisper_wav)) or np.any(np.isinf(whisper_wav)):
            raise ValueError("Resampled audio contains NaN or infinite values")
        
        # Get mel spectrogram with validation
        mel_spec = whisper.log_mel_spectrogram(whisper_wav)
        mel_spec_np = np.asarray(mel_spec)
        if np.any(np.isnan(mel_spec_np)) or np.any(np.isinf(mel_spec_np)):
            raise ValueError("Mel spectrogram contains NaN or infinite values")
        
        mel = torch.FloatTensor(mel_spec.T).to(self.device)[None].transpose(1,2)
        
        # Validate tensor before further processing - use safe tensor validation
        try:
            if torch.isnan(mel).any().item() or torch.isinf(mel).any().item():
                raise ValueError("Mel tensor contains NaN or infinite values")
        except Exception as e:
            # Fallback to numpy validation if tensor validation fails
            mel_np = mel.detach().cpu().numpy()
            if np.any(np.isnan(mel_np)) or np.any(np.isinf(mel_np)):
                raise ValueError("Mel tensor contains NaN or infinite values")
        prompt_max_frame = mel.size(2) // self.fm * self.fm
        mel = mel[:, :, :prompt_max_frame]
        token = torch.LongTensor([[798]]).to(self.device)
        audio_features = self.aligner_lm.embed_audio(mel)
        for i in range(768):
            with torch.cuda.amp.autocast(dtype=self.precision, enabled=True):
                logits = self.aligner_lm.logits(token, audio_features, None)
                token_pred = torch.argmax(F.softmax(logits[:, -1], dim=-1), 1)[None]
                token = torch.cat([token, token_pred], dim=1)
                if token_pred[0] == 799:
                    break
        alignment_tokens = token
    
    ph_ref, tone_ref, dur_ref, _ = split_ph_timestamp(deepcopy(alignment_tokens)[0, 1:-1])
    ph_ref = torch.Tensor(ph_ref)[None].to(self.device)
    tone_ref = torch.Tensor(tone_ref)[None].to(self.device)
    if dur_ref.sum() < prompt_max_frame:
        dur_ref[-1] += prompt_max_frame - dur_ref.sum()
    elif dur_ref.sum() > prompt_max_frame:
        len_diff = dur_ref.sum() - prompt_max_frame
        while True:
            for i in range(len(dur_ref)):
                dur_ref[i] -= 1
                len_diff -= 1
                if len_diff == 0:
                    break
            if len_diff == 0:
                break
    mel2ph_ref = self.length_regulator(dur_ref[None]).to(self.device)
    mel2ph_ref = mel2ph_ref[:, :mel2ph_ref.size(1)//self.fm*self.fm]
    return ph_ref, tone_ref, mel2ph_ref

''' Duration Prompting '''
def make_dur_prompt(self, mel2ph_ref, ph_ref, tone_ref):
    dur_tokens_2d_ = mel2token_to_dur(mel2ph_ref, ph_ref.shape[1]).clamp(
                    max=self.hp_dur_model['dur_code_size'] - 1) + 1

    ctx_dur_tokens = dur_tokens_2d_.clone().flatten(0, 1).to(self.device)
    txt_tokens_flat_ = ph_ref.flatten(0, 1)
    ctx_dur_tokens = ctx_dur_tokens[txt_tokens_flat_ > 0][None]

    last_dur_pos_prompt = ctx_dur_tokens.shape[1]
    dur_spk_pos_ids_flat = range(0, last_dur_pos_prompt)
    dur_spk_pos_ids_flat = torch.LongTensor([dur_spk_pos_ids_flat]).to(self.device)
    with torch.cuda.amp.autocast(dtype=self.precision, enabled=True):
        _, incremental_state_dur_prompt = self.dur_model.infer(
            ph_ref, {'tone': tone_ref}, None, None, None,
            ctx_vqcodes=ctx_dur_tokens, spk_pos_ids_flat=dur_spk_pos_ids_flat, return_state=True)
    return incremental_state_dur_prompt, ctx_dur_tokens

''' Duration Prediction '''
def dur_pred(self, ctx_dur_tokens, incremental_state_dur_prompt, ph_pred, tone_pred, seg_i, dur_disturb, dur_alpha, is_first, is_final):
    last_dur_token = ctx_dur_tokens[:, -1:]
    last_dur_pos_prompt = ctx_dur_tokens.shape[1]
    incremental_state_dur = deepcopy(incremental_state_dur_prompt)
    txt_len = ph_pred.shape[1]
    dur_spk_pos_ids_flat = range(last_dur_pos_prompt, last_dur_pos_prompt + txt_len)
    dur_spk_pos_ids_flat = torch.LongTensor([dur_spk_pos_ids_flat]).to(self.device)
    last_dur_pos_prompt = last_dur_pos_prompt + txt_len

    with torch.cuda.amp.autocast(dtype=self.precision, enabled=True):
        dur_pred = self.dur_model.infer(
            ph_pred, {'tone': tone_pred}, None, None, None,
            incremental_state=incremental_state_dur,
            first_decoder_inp=last_dur_token,
            spk_pos_ids_flat=dur_spk_pos_ids_flat,
        )

    dur_pred = dur_pred - 1
    dur_pred = dur_pred.clamp(0, self.hp_dur_model['dur_code_size'] - 1)
    # if is_final:
    #     dur_pred[:, -1] = dur_pred[:, -1].clamp(64, 128)
    # else:
    #     dur_pred[:, -1] = dur_pred[:, -1].clamp(48, 128)
    # if seg_i > 0:
        # dur_pred[:, 0] = 0
    # ['。', '!', '?', 'sil']
    # for sil_token in [148, 153, 166, 145]:
    #     dur_pred[ph_pred==sil_token].clamp_min(32)
    # # [',', ';'] 
    # for sil_token in [163, 165]:
    #     dur_pred[ph_pred==sil_token].clamp_min(16)
    if not is_final:
        # add 0.32ms for crossfade
        dur_pred[:, -1] =  dur_pred[:, -1] + 32
    else:
        dur_pred[:, -1] = dur_pred[:, -1].clamp(64, 128)

    ''' DiT target speech generation '''
    dur_disturb_choice = (torch.rand_like(dur_pred.float()) > 0.5).float()
    dur_disturb_r = 1 + torch.rand_like(dur_pred.float()) * dur_disturb
    dur_pred = dur_pred * dur_disturb_r * dur_disturb_choice + \
            dur_pred / dur_disturb_r * (1 - dur_disturb_choice)
    dur_pred = torch.round(dur_pred * dur_alpha).clamp(0, 127)
    # ['。', '!', '?', 'sil']
    for sil_token in [148, 153, 166, 145]:
        dur_pred[ph_pred==sil_token] = dur_pred[ph_pred==sil_token].clamp_min(64)
    # [',', ';'] 
    for sil_token in [163, 165]:
        dur_pred[ph_pred==sil_token] = dur_pred[ph_pred==sil_token].clamp_min(32)
    if is_first:
        dur_pred[:, 0] = 8
    
    dur_sum = dur_pred.sum()
    npad = self.fm - dur_sum % self.fm
    if npad < self.fm:
        dur_pred[:, -1] += npad
    mel2ph_pred = self.length_regulator(dur_pred).to(self.device)
    return mel2ph_pred

def prepare_inputs_for_dit(self, mel2ph_ref, mel2ph_pred, ph_ref, tone_ref, ph_pred, tone_pred, vae_latent):
    # Prepare duration token 
    mel2ph_pred = torch.cat((mel2ph_ref, mel2ph_pred+ph_ref.size(1)), dim=1)
    mel2ph_pred = mel2ph_pred[:, :mel2ph_pred.size(1)//self.fm*self.fm].repeat(3, 1)
    # Prepare phone and tone token
    ph_pred = torch.cat((ph_ref, ph_pred), dim=1)
    tone_pred = torch.cat((tone_ref, tone_pred), dim=1)
    # Disable the English tone (set them to 3)"""
    en_tone_idx = ~((tone_pred == 4) | ( (11 <= tone_pred) & (tone_pred <= 15)) | (tone_pred == 0))
    tone_pred[en_tone_idx] = 3
    
    # Prepare cfg inputs
    ph_seq = torch.cat([ph_pred, ph_pred, torch.full(ph_pred.size(), self.cfg_mask_token_phone, device=self.device)], 0)
    tone_seq = torch.cat([tone_pred, tone_pred, torch.full(tone_pred.size(), self.cfg_mask_token_tone, device=self.device)], 0)
    target_size = mel2ph_pred.size(1)//self.vae_stride
    vae_latent_ = vae_latent.repeat(3, 1, 1)
    ctx_mask = torch.ones_like(vae_latent_[:, :, 0:1])
    vae_latent_ = F.pad(vae_latent_, (0, 0, 0, target_size - vae_latent.size(1)), mode='constant', value=0)
    vae_latent_[1:] = 0.0
    ctx_mask = F.pad(ctx_mask, (0, 0, 0, target_size - vae_latent.size(1)), mode='constant', value=0)

    return {
        'phone': ph_seq,
        'tone': tone_seq,
        "lat_ctx": vae_latent_ * ctx_mask,
        "ctx_mask": ctx_mask,
        "dur": mel2ph_pred,
    }