E2-F5-TTS / src /f5_tts /train /finetune_gradio.py
mrfakename's picture
Sync from GitHub repo
27c474b verified
import gc
import json
import numpy as np
import os
import platform
import psutil
import queue
import random
import re
import signal
import shutil
import subprocess
import sys
import tempfile
import threading
import time
from glob import glob
from importlib.resources import files
from scipy.io import wavfile
import click
import gradio as gr
import librosa
import torch
import torchaudio
from cached_path import cached_path
from datasets import Dataset as Dataset_
from datasets.arrow_writer import ArrowWriter
from safetensors.torch import load_file, save_file
from f5_tts.api import F5TTS
from f5_tts.model.utils import convert_char_to_pinyin
from f5_tts.infer.utils_infer import transcribe
training_process = None
system = platform.system()
python_executable = sys.executable or "python"
tts_api = None
last_checkpoint = ""
last_device = ""
last_ema = None
path_data = str(files("f5_tts").joinpath("../../data"))
path_project_ckpts = str(files("f5_tts").joinpath("../../ckpts"))
file_train = str(files("f5_tts").joinpath("train/finetune_cli.py"))
device = (
"cuda"
if torch.cuda.is_available()
else "xpu"
if torch.xpu.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
# Save settings from a JSON file
def save_settings(
project_name,
exp_name,
learning_rate,
batch_size_per_gpu,
batch_size_type,
max_samples,
grad_accumulation_steps,
max_grad_norm,
epochs,
num_warmup_updates,
save_per_updates,
keep_last_n_checkpoints,
last_per_updates,
finetune,
file_checkpoint_train,
tokenizer_type,
tokenizer_file,
mixed_precision,
logger,
ch_8bit_adam,
):
path_project = os.path.join(path_project_ckpts, project_name)
os.makedirs(path_project, exist_ok=True)
file_setting = os.path.join(path_project, "setting.json")
settings = {
"exp_name": exp_name,
"learning_rate": learning_rate,
"batch_size_per_gpu": batch_size_per_gpu,
"batch_size_type": batch_size_type,
"max_samples": max_samples,
"grad_accumulation_steps": grad_accumulation_steps,
"max_grad_norm": max_grad_norm,
"epochs": epochs,
"num_warmup_updates": num_warmup_updates,
"save_per_updates": save_per_updates,
"keep_last_n_checkpoints": keep_last_n_checkpoints,
"last_per_updates": last_per_updates,
"finetune": finetune,
"file_checkpoint_train": file_checkpoint_train,
"tokenizer_type": tokenizer_type,
"tokenizer_file": tokenizer_file,
"mixed_precision": mixed_precision,
"logger": logger,
"bnb_optimizer": ch_8bit_adam,
}
with open(file_setting, "w") as f:
json.dump(settings, f, indent=4)
return "Settings saved!"
# Load settings from a JSON file
def load_settings(project_name):
project_name = project_name.replace("_pinyin", "").replace("_char", "")
path_project = os.path.join(path_project_ckpts, project_name)
file_setting = os.path.join(path_project, "setting.json")
# Default settings
default_settings = {
"exp_name": "F5TTS_v1_Base",
"learning_rate": 1e-5,
"batch_size_per_gpu": 3200,
"batch_size_type": "frame",
"max_samples": 64,
"grad_accumulation_steps": 1,
"max_grad_norm": 1.0,
"epochs": 100,
"num_warmup_updates": 100,
"save_per_updates": 500,
"keep_last_n_checkpoints": -1,
"last_per_updates": 100,
"finetune": True,
"file_checkpoint_train": "",
"tokenizer_type": "pinyin",
"tokenizer_file": "",
"mixed_precision": "fp16",
"logger": "none",
"bnb_optimizer": False,
}
if device == "mps":
default_settings["mixed_precision"] = "none"
# Load settings from file if it exists
if os.path.isfile(file_setting):
with open(file_setting, "r") as f:
file_settings = json.load(f)
default_settings.update(file_settings)
# Return as a tuple in the correct order
return (
default_settings["exp_name"],
default_settings["learning_rate"],
default_settings["batch_size_per_gpu"],
default_settings["batch_size_type"],
default_settings["max_samples"],
default_settings["grad_accumulation_steps"],
default_settings["max_grad_norm"],
default_settings["epochs"],
default_settings["num_warmup_updates"],
default_settings["save_per_updates"],
default_settings["keep_last_n_checkpoints"],
default_settings["last_per_updates"],
default_settings["finetune"],
default_settings["file_checkpoint_train"],
default_settings["tokenizer_type"],
default_settings["tokenizer_file"],
default_settings["mixed_precision"],
default_settings["logger"],
default_settings["bnb_optimizer"],
)
# Load metadata
def get_audio_duration(audio_path):
"""Calculate the duration mono of an audio file."""
audio, sample_rate = torchaudio.load(audio_path)
return audio.shape[1] / sample_rate
def clear_text(text):
"""Clean and prepare text by lowering the case and stripping whitespace."""
return text.lower().strip()
def get_rms(
y,
frame_length=2048,
hop_length=512,
pad_mode="constant",
): # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
padding = (int(frame_length // 2), int(frame_length // 2))
y = np.pad(y, padding, mode=pad_mode)
axis = -1
# put our new within-frame axis at the end for now
out_strides = y.strides + tuple([y.strides[axis]])
# Reduce the shape on the framing axis
x_shape_trimmed = list(y.shape)
x_shape_trimmed[axis] -= frame_length - 1
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
if axis < 0:
target_axis = axis - 1
else:
target_axis = axis + 1
xw = np.moveaxis(xw, -1, target_axis)
# Downsample along the target axis
slices = [slice(None)] * xw.ndim
slices[axis] = slice(0, None, hop_length)
x = xw[tuple(slices)]
# Calculate power
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
return np.sqrt(power)
class Slicer: # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
def __init__(
self,
sr: int,
threshold: float = -40.0,
min_length: int = 2000,
min_interval: int = 300,
hop_size: int = 20,
max_sil_kept: int = 2000,
):
if not min_length >= min_interval >= hop_size:
raise ValueError("The following condition must be satisfied: min_length >= min_interval >= hop_size")
if not max_sil_kept >= hop_size:
raise ValueError("The following condition must be satisfied: max_sil_kept >= hop_size")
min_interval = sr * min_interval / 1000
self.threshold = 10 ** (threshold / 20.0)
self.hop_size = round(sr * hop_size / 1000)
self.win_size = min(round(min_interval), 4 * self.hop_size)
self.min_length = round(sr * min_length / 1000 / self.hop_size)
self.min_interval = round(min_interval / self.hop_size)
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
def _apply_slice(self, waveform, begin, end):
if len(waveform.shape) > 1:
return waveform[:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)]
else:
return waveform[begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)]
# @timeit
def slice(self, waveform):
if len(waveform.shape) > 1:
samples = waveform.mean(axis=0)
else:
samples = waveform
if samples.shape[0] <= self.min_length:
return [waveform]
rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
sil_tags = []
silence_start = None
clip_start = 0
for i, rms in enumerate(rms_list):
# Keep looping while frame is silent.
if rms < self.threshold:
# Record start of silent frames.
if silence_start is None:
silence_start = i
continue
# Keep looping while frame is not silent and silence start has not been recorded.
if silence_start is None:
continue
# Clear recorded silence start if interval is not enough or clip is too short
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
if not is_leading_silence and not need_slice_middle:
silence_start = None
continue
# Need slicing. Record the range of silent frames to be removed.
if i - silence_start <= self.max_sil_kept:
pos = rms_list[silence_start : i + 1].argmin() + silence_start
if silence_start == 0:
sil_tags.append((0, pos))
else:
sil_tags.append((pos, pos))
clip_start = pos
elif i - silence_start <= self.max_sil_kept * 2:
pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin()
pos += i - self.max_sil_kept
pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start
pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept
if silence_start == 0:
sil_tags.append((0, pos_r))
clip_start = pos_r
else:
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
clip_start = max(pos_r, pos)
else:
pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start
pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept
if silence_start == 0:
sil_tags.append((0, pos_r))
else:
sil_tags.append((pos_l, pos_r))
clip_start = pos_r
silence_start = None
# Deal with trailing silence.
total_frames = rms_list.shape[0]
if silence_start is not None and total_frames - silence_start >= self.min_interval:
silence_end = min(total_frames, silence_start + self.max_sil_kept)
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
sil_tags.append((pos, total_frames + 1))
# Apply and return slices.
####音频+起始时间+终止时间
if len(sil_tags) == 0:
return [[waveform, 0, int(total_frames * self.hop_size)]]
else:
chunks = []
if sil_tags[0][0] > 0:
chunks.append([self._apply_slice(waveform, 0, sil_tags[0][0]), 0, int(sil_tags[0][0] * self.hop_size)])
for i in range(len(sil_tags) - 1):
chunks.append(
[
self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]),
int(sil_tags[i][1] * self.hop_size),
int(sil_tags[i + 1][0] * self.hop_size),
]
)
if sil_tags[-1][1] < total_frames:
chunks.append(
[
self._apply_slice(waveform, sil_tags[-1][1], total_frames),
int(sil_tags[-1][1] * self.hop_size),
int(total_frames * self.hop_size),
]
)
return chunks
# terminal
def terminate_process_tree(pid, including_parent=True):
try:
parent = psutil.Process(pid)
except psutil.NoSuchProcess:
# Process already terminated
return
children = parent.children(recursive=True)
for child in children:
try:
os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL
except OSError:
pass
if including_parent:
try:
os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL
except OSError:
pass
def terminate_process(pid):
if system == "Windows":
cmd = f"taskkill /t /f /pid {pid}"
os.system(cmd)
else:
terminate_process_tree(pid)
def start_training(
dataset_name,
exp_name,
learning_rate,
batch_size_per_gpu,
batch_size_type,
max_samples,
grad_accumulation_steps,
max_grad_norm,
epochs,
num_warmup_updates,
save_per_updates,
keep_last_n_checkpoints,
last_per_updates,
finetune,
file_checkpoint_train,
tokenizer_type,
tokenizer_file,
mixed_precision,
stream,
logger,
ch_8bit_adam,
):
global training_process, tts_api, stop_signal
if tts_api is not None:
if tts_api is not None:
del tts_api
gc.collect()
torch.cuda.empty_cache()
tts_api = None
path_project = os.path.join(path_data, dataset_name)
if not os.path.isdir(path_project):
yield (
f"There is not project with name {dataset_name}",
gr.update(interactive=True),
gr.update(interactive=False),
)
return
file_raw = os.path.join(path_project, "raw.arrow")
if not os.path.isfile(file_raw):
yield f"There is no file {file_raw}", gr.update(interactive=True), gr.update(interactive=False)
return
# Check if a training process is already running
if training_process is not None:
return "Train run already!", gr.update(interactive=False), gr.update(interactive=True)
yield "start train", gr.update(interactive=False), gr.update(interactive=False)
# Command to run the training script with the specified arguments
if tokenizer_file == "":
if dataset_name.endswith("_pinyin"):
tokenizer_type = "pinyin"
elif dataset_name.endswith("_char"):
tokenizer_type = "char"
else:
tokenizer_type = "custom"
dataset_name = dataset_name.replace("_pinyin", "").replace("_char", "")
if mixed_precision != "none":
fp16 = f"--mixed_precision={mixed_precision}"
else:
fp16 = ""
cmd = (
f"accelerate launch {fp16} {file_train} --exp_name {exp_name}"
f" --learning_rate {learning_rate}"
f" --batch_size_per_gpu {batch_size_per_gpu}"
f" --batch_size_type {batch_size_type}"
f" --max_samples {max_samples}"
f" --grad_accumulation_steps {grad_accumulation_steps}"
f" --max_grad_norm {max_grad_norm}"
f" --epochs {epochs}"
f" --num_warmup_updates {num_warmup_updates}"
f" --save_per_updates {save_per_updates}"
f" --keep_last_n_checkpoints {keep_last_n_checkpoints}"
f" --last_per_updates {last_per_updates}"
f" --dataset_name {dataset_name}"
)
if finetune:
cmd += " --finetune"
if file_checkpoint_train != "":
cmd += f" --pretrain {file_checkpoint_train}"
if tokenizer_file != "":
cmd += f" --tokenizer_path {tokenizer_file}"
cmd += f" --tokenizer {tokenizer_type}"
if logger != "none":
cmd += f" --logger {logger}"
cmd += " --log_samples"
if ch_8bit_adam:
cmd += " --bnb_optimizer"
print("run command : \n" + cmd + "\n")
save_settings(
dataset_name,
exp_name,
learning_rate,
batch_size_per_gpu,
batch_size_type,
max_samples,
grad_accumulation_steps,
max_grad_norm,
epochs,
num_warmup_updates,
save_per_updates,
keep_last_n_checkpoints,
last_per_updates,
finetune,
file_checkpoint_train,
tokenizer_type,
tokenizer_file,
mixed_precision,
logger,
ch_8bit_adam,
)
try:
if not stream:
# Start the training process
training_process = subprocess.Popen(cmd, shell=True)
time.sleep(5)
yield "train start", gr.update(interactive=False), gr.update(interactive=True)
# Wait for the training process to finish
training_process.wait()
else:
def stream_output(pipe, output_queue):
try:
for line in iter(pipe.readline, ""):
output_queue.put(line)
except Exception as e:
output_queue.put(f"Error reading pipe: {str(e)}")
finally:
pipe.close()
env = os.environ.copy()
env["PYTHONUNBUFFERED"] = "1"
training_process = subprocess.Popen(
cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1, env=env
)
yield "Training started ...", gr.update(interactive=False), gr.update(interactive=True)
stdout_queue = queue.Queue()
stderr_queue = queue.Queue()
stdout_thread = threading.Thread(target=stream_output, args=(training_process.stdout, stdout_queue))
stderr_thread = threading.Thread(target=stream_output, args=(training_process.stderr, stderr_queue))
stdout_thread.daemon = True
stderr_thread.daemon = True
stdout_thread.start()
stderr_thread.start()
stop_signal = False
while True:
if stop_signal:
training_process.terminate()
time.sleep(0.5)
if training_process.poll() is None:
training_process.kill()
yield "Training stopped by user.", gr.update(interactive=True), gr.update(interactive=False)
break
process_status = training_process.poll()
# Handle stdout
try:
while True:
output = stdout_queue.get_nowait()
print(output, end="")
match = re.search(
r"Epoch (\d+)/(\d+):\s+(\d+)%\|.*\[(\d+:\d+)<.*?loss=(\d+\.\d+), update=(\d+)", output
)
if match:
current_epoch = match.group(1)
total_epochs = match.group(2)
percent_complete = match.group(3)
elapsed_time = match.group(4)
loss = match.group(5)
current_update = match.group(6)
message = (
f"Epoch: {current_epoch}/{total_epochs}, "
f"Progress: {percent_complete}%, "
f"Elapsed Time: {elapsed_time}, "
f"Loss: {loss}, "
f"Update: {current_update}"
)
yield message, gr.update(interactive=False), gr.update(interactive=True)
elif output.strip():
yield output, gr.update(interactive=False), gr.update(interactive=True)
except queue.Empty:
pass
# Handle stderr
try:
while True:
error_output = stderr_queue.get_nowait()
print(error_output, end="")
if error_output.strip():
yield f"{error_output.strip()}", gr.update(interactive=False), gr.update(interactive=True)
except queue.Empty:
pass
if process_status is not None and stdout_queue.empty() and stderr_queue.empty():
if process_status != 0:
yield (
f"Process crashed with exit code {process_status}!",
gr.update(interactive=False),
gr.update(interactive=True),
)
else:
yield (
"Training complete or paused ...",
gr.update(interactive=False),
gr.update(interactive=True),
)
break
# Small sleep to prevent CPU thrashing
time.sleep(0.1)
# Clean up
training_process.stdout.close()
training_process.stderr.close()
training_process.wait()
time.sleep(1)
if training_process is None:
text_info = "Train stopped !"
else:
text_info = "Train complete at end !"
except Exception as e: # Catch all exceptions
# Ensure that we reset the training process variable in case of an error
text_info = f"An error occurred: {str(e)}"
training_process = None
yield text_info, gr.update(interactive=True), gr.update(interactive=False)
def stop_training():
global training_process, stop_signal
if training_process is None:
return "Train not running !", gr.update(interactive=True), gr.update(interactive=False)
terminate_process_tree(training_process.pid)
# training_process = None
stop_signal = True
return "Train stopped !", gr.update(interactive=True), gr.update(interactive=False)
def get_list_projects():
project_list = []
for folder in os.listdir(path_data):
path_folder = os.path.join(path_data, folder)
if not os.path.isdir(path_folder):
continue
folder = folder.lower()
if folder == "emilia_zh_en_pinyin":
continue
project_list.append(folder)
projects_selelect = None if not project_list else project_list[-1]
return project_list, projects_selelect
def create_data_project(name, tokenizer_type):
name += "_" + tokenizer_type
os.makedirs(os.path.join(path_data, name), exist_ok=True)
os.makedirs(os.path.join(path_data, name, "dataset"), exist_ok=True)
project_list, projects_selelect = get_list_projects()
return gr.update(choices=project_list, value=name)
def transcribe_all(name_project, audio_files, language, user=False, progress=gr.Progress()):
path_project = os.path.join(path_data, name_project)
path_dataset = os.path.join(path_project, "dataset")
path_project_wavs = os.path.join(path_project, "wavs")
file_metadata = os.path.join(path_project, "metadata.csv")
if not user:
if audio_files is None:
return "You need to load an audio file."
if os.path.isdir(path_project_wavs):
shutil.rmtree(path_project_wavs)
if os.path.isfile(file_metadata):
os.remove(file_metadata)
os.makedirs(path_project_wavs, exist_ok=True)
if user:
file_audios = [
file
for format in ("*.wav", "*.ogg", "*.opus", "*.mp3", "*.flac")
for file in glob(os.path.join(path_dataset, format))
]
if file_audios == []:
return "No audio file was found in the dataset."
else:
file_audios = audio_files
alpha = 0.5
_max = 1.0
slicer = Slicer(24000)
num = 0
error_num = 0
data = ""
for file_audio in progress.tqdm(file_audios, desc="transcribe files", total=len((file_audios))):
audio, _ = librosa.load(file_audio, sr=24000, mono=True)
list_slicer = slicer.slice(audio)
for chunk, start, end in progress.tqdm(list_slicer, total=len(list_slicer), desc="slicer files"):
name_segment = os.path.join(f"segment_{num}")
file_segment = os.path.join(path_project_wavs, f"{name_segment}.wav")
tmp_max = np.abs(chunk).max()
if tmp_max > 1:
chunk /= tmp_max
chunk = (chunk / tmp_max * (_max * alpha)) + (1 - alpha) * chunk
wavfile.write(file_segment, 24000, (chunk * 32767).astype(np.int16))
try:
text = transcribe(file_segment, language)
text = text.lower().strip().replace('"', "")
data += f"{name_segment}|{text}\n"
num += 1
except: # noqa: E722
error_num += 1
with open(file_metadata, "w", encoding="utf-8-sig") as f:
f.write(data)
if error_num != []:
error_text = f"\nerror files : {error_num}"
else:
error_text = ""
return f"transcribe complete samples : {num}\npath : {path_project_wavs}{error_text}"
def format_seconds_to_hms(seconds):
hours = int(seconds / 3600)
minutes = int((seconds % 3600) / 60)
seconds = seconds % 60
return "{:02d}:{:02d}:{:02d}".format(hours, minutes, int(seconds))
def get_correct_audio_path(
audio_input,
base_path="wavs",
supported_formats=("wav", "mp3", "aac", "flac", "m4a", "alac", "ogg", "aiff", "wma", "amr"),
):
file_audio = None
# Helper function to check if file has a supported extension
def has_supported_extension(file_name):
return any(file_name.endswith(f".{ext}") for ext in supported_formats)
# Case 1: If it's a full path with a valid extension, use it directly
if os.path.isabs(audio_input) and has_supported_extension(audio_input):
file_audio = audio_input
# Case 2: If it has a supported extension but is not a full path
elif has_supported_extension(audio_input) and not os.path.isabs(audio_input):
file_audio = os.path.join(base_path, audio_input)
# Case 3: If only the name is given (no extension and not a full path)
elif not has_supported_extension(audio_input) and not os.path.isabs(audio_input):
for ext in supported_formats:
potential_file = os.path.join(base_path, f"{audio_input}.{ext}")
if os.path.exists(potential_file):
file_audio = potential_file
break
else:
file_audio = os.path.join(base_path, f"{audio_input}.{supported_formats[0]}")
return file_audio
def create_metadata(name_project, ch_tokenizer, progress=gr.Progress()):
path_project = os.path.join(path_data, name_project)
path_project_wavs = os.path.join(path_project, "wavs")
file_metadata = os.path.join(path_project, "metadata.csv")
file_raw = os.path.join(path_project, "raw.arrow")
file_duration = os.path.join(path_project, "duration.json")
file_vocab = os.path.join(path_project, "vocab.txt")
if not os.path.isfile(file_metadata):
return "The file was not found in " + file_metadata, ""
with open(file_metadata, "r", encoding="utf-8-sig") as f:
data = f.read()
audio_path_list = []
text_list = []
duration_list = []
count = data.split("\n")
lenght = 0
result = []
error_files = []
text_vocab_set = set()
for line in progress.tqdm(data.split("\n"), total=count):
sp_line = line.split("|")
if len(sp_line) != 2:
continue
name_audio, text = sp_line[:2]
file_audio = get_correct_audio_path(name_audio, path_project_wavs)
if not os.path.isfile(file_audio):
error_files.append([file_audio, "error path"])
continue
try:
duration = get_audio_duration(file_audio)
except Exception as e:
error_files.append([file_audio, "duration"])
print(f"Error processing {file_audio}: {e}")
continue
if duration < 1 or duration > 30:
if duration > 30:
error_files.append([file_audio, "duration > 30 sec"])
if duration < 1:
error_files.append([file_audio, "duration < 1 sec "])
continue
if len(text) < 3:
error_files.append([file_audio, "very short text length 3"])
continue
text = clear_text(text)
text = convert_char_to_pinyin([text], polyphone=True)[0]
audio_path_list.append(file_audio)
duration_list.append(duration)
text_list.append(text)
result.append({"audio_path": file_audio, "text": text, "duration": duration})
if ch_tokenizer:
text_vocab_set.update(list(text))
lenght += duration
if duration_list == []:
return f"Error: No audio files found in the specified path : {path_project_wavs}", ""
min_second = round(min(duration_list), 2)
max_second = round(max(duration_list), 2)
with ArrowWriter(path=file_raw, writer_batch_size=1) as writer:
for line in progress.tqdm(result, total=len(result), desc="prepare data"):
writer.write(line)
with open(file_duration, "w") as f:
json.dump({"duration": duration_list}, f, ensure_ascii=False)
new_vocal = ""
if not ch_tokenizer:
if not os.path.isfile(file_vocab):
file_vocab_finetune = os.path.join(path_data, "Emilia_ZH_EN_pinyin/vocab.txt")
if not os.path.isfile(file_vocab_finetune):
return "Error: Vocabulary file 'Emilia_ZH_EN_pinyin' not found!", ""
shutil.copy2(file_vocab_finetune, file_vocab)
with open(file_vocab, "r", encoding="utf-8-sig") as f:
vocab_char_map = {}
for i, char in enumerate(f):
vocab_char_map[char[:-1]] = i
vocab_size = len(vocab_char_map)
else:
with open(file_vocab, "w", encoding="utf-8-sig") as f:
for vocab in sorted(text_vocab_set):
f.write(vocab + "\n")
new_vocal += vocab + "\n"
vocab_size = len(text_vocab_set)
if error_files != []:
error_text = "\n".join([" = ".join(item) for item in error_files])
else:
error_text = ""
return (
f"prepare complete \nsamples : {len(text_list)}\ntime data : {format_seconds_to_hms(lenght)}\nmin sec : {min_second}\nmax sec : {max_second}\nfile_arrow : {file_raw}\nvocab : {vocab_size}\n{error_text}",
new_vocal,
)
def check_user(value):
return gr.update(visible=not value), gr.update(visible=value)
def calculate_train(
name_project,
epochs,
learning_rate,
batch_size_per_gpu,
batch_size_type,
max_samples,
num_warmup_updates,
finetune,
):
path_project = os.path.join(path_data, name_project)
file_duration = os.path.join(path_project, "duration.json")
hop_length = 256
sampling_rate = 24000
if not os.path.isfile(file_duration):
return (
epochs,
learning_rate,
batch_size_per_gpu,
max_samples,
num_warmup_updates,
"project not found !",
)
with open(file_duration, "r") as file:
data = json.load(file)
duration_list = data["duration"]
max_sample_length = max(duration_list) * sampling_rate / hop_length
total_samples = len(duration_list)
total_duration = sum(duration_list)
if torch.cuda.is_available():
gpu_count = torch.cuda.device_count()
total_memory = 0
for i in range(gpu_count):
gpu_properties = torch.cuda.get_device_properties(i)
total_memory += gpu_properties.total_memory / (1024**3) # in GB
elif torch.xpu.is_available():
gpu_count = torch.xpu.device_count()
total_memory = 0
for i in range(gpu_count):
gpu_properties = torch.xpu.get_device_properties(i)
total_memory += gpu_properties.total_memory / (1024**3)
elif torch.backends.mps.is_available():
gpu_count = 1
total_memory = psutil.virtual_memory().available / (1024**3)
avg_gpu_memory = total_memory / gpu_count
# rough estimate of batch size
if batch_size_type == "frame":
batch_size_per_gpu = max(int(38400 * (avg_gpu_memory - 5) / 75), int(max_sample_length))
elif batch_size_type == "sample":
batch_size_per_gpu = int(200 / (total_duration / total_samples))
if total_samples < 64:
max_samples = int(total_samples * 0.25)
num_warmup_updates = max(num_warmup_updates, int(total_samples * 0.05))
# take 1.2M updates as the maximum
max_updates = 1200000
if batch_size_type == "frame":
mini_batch_duration = batch_size_per_gpu * gpu_count * hop_length / sampling_rate
updates_per_epoch = total_duration / mini_batch_duration
elif batch_size_type == "sample":
updates_per_epoch = total_samples / batch_size_per_gpu / gpu_count
epochs = int(max_updates / updates_per_epoch)
if finetune:
learning_rate = 1e-5
else:
learning_rate = 7.5e-5
return (
epochs,
learning_rate,
batch_size_per_gpu,
max_samples,
num_warmup_updates,
total_samples,
)
def prune_checkpoint(checkpoint_path: str, new_checkpoint_path: str, save_ema: bool, safetensors: bool) -> str:
try:
checkpoint = torch.load(checkpoint_path, weights_only=True)
print("Original Checkpoint Keys:", checkpoint.keys())
to_retain = "ema_model_state_dict" if save_ema else "model_state_dict"
try:
model_state_dict_to_retain = checkpoint[to_retain]
except KeyError:
return f"{to_retain} not found in the checkpoint."
if safetensors:
new_checkpoint_path = new_checkpoint_path.replace(".pt", ".safetensors")
save_file(model_state_dict_to_retain, new_checkpoint_path)
else:
new_checkpoint_path = new_checkpoint_path.replace(".safetensors", ".pt")
new_checkpoint = {"ema_model_state_dict": model_state_dict_to_retain}
torch.save(new_checkpoint, new_checkpoint_path)
return f"New checkpoint saved at: {new_checkpoint_path}"
except Exception as e:
return f"An error occurred: {e}"
def expand_model_embeddings(ckpt_path, new_ckpt_path, num_new_tokens=42):
seed = 666
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if ckpt_path.endswith(".safetensors"):
ckpt = load_file(ckpt_path, device="cpu")
ckpt = {"ema_model_state_dict": ckpt}
elif ckpt_path.endswith(".pt"):
ckpt = torch.load(ckpt_path, map_location="cpu")
ema_sd = ckpt.get("ema_model_state_dict", {})
embed_key_ema = "ema_model.transformer.text_embed.text_embed.weight"
old_embed_ema = ema_sd[embed_key_ema]
vocab_old = old_embed_ema.size(0)
embed_dim = old_embed_ema.size(1)
vocab_new = vocab_old + num_new_tokens
def expand_embeddings(old_embeddings):
new_embeddings = torch.zeros((vocab_new, embed_dim))
new_embeddings[:vocab_old] = old_embeddings
new_embeddings[vocab_old:] = torch.randn((num_new_tokens, embed_dim))
return new_embeddings
ema_sd[embed_key_ema] = expand_embeddings(ema_sd[embed_key_ema])
if new_ckpt_path.endswith(".safetensors"):
save_file(ema_sd, new_ckpt_path)
elif new_ckpt_path.endswith(".pt"):
torch.save(ckpt, new_ckpt_path)
return vocab_new
def vocab_count(text):
return str(len(text.split(",")))
def vocab_extend(project_name, symbols, model_type):
if symbols == "":
return "Symbols empty!"
name_project = project_name
path_project = os.path.join(path_data, name_project)
file_vocab_project = os.path.join(path_project, "vocab.txt")
file_vocab = os.path.join(path_data, "Emilia_ZH_EN_pinyin/vocab.txt")
if not os.path.isfile(file_vocab):
return f"the file {file_vocab} not found !"
symbols = symbols.split(",")
if symbols == []:
return "Symbols to extend not found."
with open(file_vocab, "r", encoding="utf-8-sig") as f:
data = f.read()
vocab = data.split("\n")
vocab_check = set(vocab)
miss_symbols = []
for item in symbols:
item = item.replace(" ", "")
if item in vocab_check:
continue
miss_symbols.append(item)
if miss_symbols == []:
return "Symbols are okay no need to extend."
size_vocab = len(vocab)
vocab.pop()
for item in miss_symbols:
vocab.append(item)
vocab.append("")
with open(file_vocab_project, "w", encoding="utf-8") as f:
f.write("\n".join(vocab))
if model_type == "F5TTS_v1_Base":
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_v1_Base/model_1250000.safetensors"))
elif model_type == "F5TTS_Base":
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
elif model_type == "E2TTS_Base":
ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
vocab_size_new = len(miss_symbols)
dataset_name = name_project.replace("_pinyin", "").replace("_char", "")
new_ckpt_path = os.path.join(path_project_ckpts, dataset_name)
os.makedirs(new_ckpt_path, exist_ok=True)
# Add pretrained_ prefix to model when copying for consistency with finetune_cli.py
new_ckpt_file = os.path.join(new_ckpt_path, "pretrained_" + os.path.basename(ckpt_path))
size = expand_model_embeddings(ckpt_path, new_ckpt_file, num_new_tokens=vocab_size_new)
vocab_new = "\n".join(miss_symbols)
return f"vocab old size : {size_vocab}\nvocab new size : {size}\nvocab add : {vocab_size_new}\nnew symbols :\n{vocab_new}"
def vocab_check(project_name):
name_project = project_name
path_project = os.path.join(path_data, name_project)
file_metadata = os.path.join(path_project, "metadata.csv")
file_vocab = os.path.join(path_data, "Emilia_ZH_EN_pinyin/vocab.txt")
if not os.path.isfile(file_vocab):
return f"the file {file_vocab} not found !", ""
with open(file_vocab, "r", encoding="utf-8-sig") as f:
data = f.read()
vocab = data.split("\n")
vocab = set(vocab)
if not os.path.isfile(file_metadata):
return f"the file {file_metadata} not found !", ""
with open(file_metadata, "r", encoding="utf-8-sig") as f:
data = f.read()
miss_symbols = []
miss_symbols_keep = {}
for item in data.split("\n"):
sp = item.split("|")
if len(sp) != 2:
continue
text = sp[1].lower().strip()
for t in text:
if t not in vocab and t not in miss_symbols_keep:
miss_symbols.append(t)
miss_symbols_keep[t] = t
if miss_symbols == []:
vocab_miss = ""
info = "You can train using your language !"
else:
vocab_miss = ",".join(miss_symbols)
info = f"The following {len(miss_symbols)} symbols are missing in your language\n\n"
return info, vocab_miss
def get_random_sample_prepare(project_name):
name_project = project_name
path_project = os.path.join(path_data, name_project)
file_arrow = os.path.join(path_project, "raw.arrow")
if not os.path.isfile(file_arrow):
return "", None
dataset = Dataset_.from_file(file_arrow)
random_sample = dataset.shuffle(seed=random.randint(0, 1000)).select([0])
text = "[" + " , ".join(["' " + t + " '" for t in random_sample["text"][0]]) + "]"
audio_path = random_sample["audio_path"][0]
return text, audio_path
def get_random_sample_transcribe(project_name):
name_project = project_name
path_project = os.path.join(path_data, name_project)
file_metadata = os.path.join(path_project, "metadata.csv")
if not os.path.isfile(file_metadata):
return "", None
data = ""
with open(file_metadata, "r", encoding="utf-8-sig") as f:
data = f.read()
list_data = []
for item in data.split("\n"):
sp = item.split("|")
if len(sp) != 2:
continue
# fixed audio when it is absolute
file_audio = get_correct_audio_path(sp[0], os.path.join(path_project, "wavs"))
list_data.append([file_audio, sp[1]])
if list_data == []:
return "", None
random_item = random.choice(list_data)
return random_item[1], random_item[0]
def get_random_sample_infer(project_name):
text, audio = get_random_sample_transcribe(project_name)
return (
text,
text,
audio,
)
def infer(
project, file_checkpoint, exp_name, ref_text, ref_audio, gen_text, nfe_step, use_ema, speed, seed, remove_silence
):
global last_checkpoint, last_device, tts_api, last_ema
if not os.path.isfile(file_checkpoint):
return None, "checkpoint not found!"
if training_process is not None:
device_test = "cpu"
else:
device_test = None
if last_checkpoint != file_checkpoint or last_device != device_test or last_ema != use_ema or tts_api is None:
if last_checkpoint != file_checkpoint:
last_checkpoint = file_checkpoint
if last_device != device_test:
last_device = device_test
if last_ema != use_ema:
last_ema = use_ema
vocab_file = os.path.join(path_data, project, "vocab.txt")
tts_api = F5TTS(
model=exp_name, ckpt_file=file_checkpoint, vocab_file=vocab_file, device=device_test, use_ema=use_ema
)
print("update >> ", device_test, file_checkpoint, use_ema)
if seed == -1: # -1 used for random
seed = None
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
tts_api.infer(
ref_file=ref_audio,
ref_text=ref_text.lower().strip(),
gen_text=gen_text.lower().strip(),
nfe_step=nfe_step,
speed=speed,
remove_silence=remove_silence,
file_wave=f.name,
seed=seed,
)
return f.name, tts_api.device, str(tts_api.seed)
def check_finetune(finetune):
return gr.update(interactive=finetune), gr.update(interactive=finetune), gr.update(interactive=finetune)
def get_checkpoints_project(project_name, is_gradio=True):
if project_name is None:
return [], ""
project_name = project_name.replace("_pinyin", "").replace("_char", "")
if os.path.isdir(path_project_ckpts):
files_checkpoints = glob(os.path.join(path_project_ckpts, project_name, "*.pt"))
# Separate pretrained and regular checkpoints
pretrained_checkpoints = [f for f in files_checkpoints if "pretrained_" in os.path.basename(f)]
regular_checkpoints = [
f
for f in files_checkpoints
if "pretrained_" not in os.path.basename(f) and "model_last.pt" not in os.path.basename(f)
]
last_checkpoint = [f for f in files_checkpoints if "model_last.pt" in os.path.basename(f)]
# Sort regular checkpoints by number
regular_checkpoints = sorted(
regular_checkpoints, key=lambda x: int(os.path.basename(x).split("_")[1].split(".")[0])
)
# Combine in order: pretrained, regular, last
files_checkpoints = pretrained_checkpoints + regular_checkpoints + last_checkpoint
else:
files_checkpoints = []
selelect_checkpoint = None if not files_checkpoints else files_checkpoints[0]
if is_gradio:
return gr.update(choices=files_checkpoints, value=selelect_checkpoint)
return files_checkpoints, selelect_checkpoint
def get_audio_project(project_name, is_gradio=True):
if project_name is None:
return [], ""
project_name = project_name.replace("_pinyin", "").replace("_char", "")
if os.path.isdir(path_project_ckpts):
files_audios = glob(os.path.join(path_project_ckpts, project_name, "samples", "*.wav"))
files_audios = sorted(files_audios, key=lambda x: int(os.path.basename(x).split("_")[1].split(".")[0]))
files_audios = [item.replace("_gen.wav", "") for item in files_audios if item.endswith("_gen.wav")]
else:
files_audios = []
selelect_checkpoint = None if not files_audios else files_audios[0]
if is_gradio:
return gr.update(choices=files_audios, value=selelect_checkpoint)
return files_audios, selelect_checkpoint
def get_gpu_stats():
gpu_stats = ""
if torch.cuda.is_available():
gpu_count = torch.cuda.device_count()
for i in range(gpu_count):
gpu_name = torch.cuda.get_device_name(i)
gpu_properties = torch.cuda.get_device_properties(i)
total_memory = gpu_properties.total_memory / (1024**3) # in GB
allocated_memory = torch.cuda.memory_allocated(i) / (1024**2) # in MB
reserved_memory = torch.cuda.memory_reserved(i) / (1024**2) # in MB
gpu_stats += (
f"GPU {i} Name: {gpu_name}\n"
f"Total GPU memory (GPU {i}): {total_memory:.2f} GB\n"
f"Allocated GPU memory (GPU {i}): {allocated_memory:.2f} MB\n"
f"Reserved GPU memory (GPU {i}): {reserved_memory:.2f} MB\n\n"
)
elif torch.xpu.is_available():
gpu_count = torch.xpu.device_count()
for i in range(gpu_count):
gpu_name = torch.xpu.get_device_name(i)
gpu_properties = torch.xpu.get_device_properties(i)
total_memory = gpu_properties.total_memory / (1024**3) # in GB
allocated_memory = torch.xpu.memory_allocated(i) / (1024**2) # in MB
reserved_memory = torch.xpu.memory_reserved(i) / (1024**2) # in MB
gpu_stats += (
f"GPU {i} Name: {gpu_name}\n"
f"Total GPU memory (GPU {i}): {total_memory:.2f} GB\n"
f"Allocated GPU memory (GPU {i}): {allocated_memory:.2f} MB\n"
f"Reserved GPU memory (GPU {i}): {reserved_memory:.2f} MB\n\n"
)
elif torch.backends.mps.is_available():
gpu_count = 1
gpu_stats += "MPS GPU\n"
total_memory = psutil.virtual_memory().total / (
1024**3
) # Total system memory (MPS doesn't have its own memory)
allocated_memory = 0
reserved_memory = 0
gpu_stats += (
f"Total system memory: {total_memory:.2f} GB\n"
f"Allocated GPU memory (MPS): {allocated_memory:.2f} MB\n"
f"Reserved GPU memory (MPS): {reserved_memory:.2f} MB\n"
)
else:
gpu_stats = "No GPU available"
return gpu_stats
def get_cpu_stats():
cpu_usage = psutil.cpu_percent(interval=1)
memory_info = psutil.virtual_memory()
memory_used = memory_info.used / (1024**2)
memory_total = memory_info.total / (1024**2)
memory_percent = memory_info.percent
pid = os.getpid()
process = psutil.Process(pid)
nice_value = process.nice()
cpu_stats = (
f"CPU Usage: {cpu_usage:.2f}%\n"
f"System Memory: {memory_used:.2f} MB used / {memory_total:.2f} MB total ({memory_percent}% used)\n"
f"Process Priority (Nice value): {nice_value}"
)
return cpu_stats
def get_combined_stats():
gpu_stats = get_gpu_stats()
cpu_stats = get_cpu_stats()
combined_stats = f"### GPU Stats\n{gpu_stats}\n\n### CPU Stats\n{cpu_stats}"
return combined_stats
def get_audio_select(file_sample):
select_audio_ref = file_sample
select_audio_gen = file_sample
if file_sample is not None:
select_audio_ref += "_ref.wav"
select_audio_gen += "_gen.wav"
return select_audio_ref, select_audio_gen
with gr.Blocks() as app:
gr.Markdown(
"""
# F5 TTS Automatic Finetune
This is a local web UI for F5 TTS finetuning support. This app supports the following TTS models:
* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
* [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)
The pretrained checkpoints support English and Chinese.
For tutorial and updates check here (https://github.com/SWivid/F5-TTS/discussions/143)
"""
)
with gr.Row():
projects, projects_selelect = get_list_projects()
tokenizer_type = gr.Radio(label="Tokenizer Type", choices=["pinyin", "char", "custom"], value="pinyin")
project_name = gr.Textbox(label="Project Name", value="my_speak")
bt_create = gr.Button("Create a New Project")
with gr.Row():
cm_project = gr.Dropdown(
choices=projects, value=projects_selelect, label="Project", allow_custom_value=True, scale=6
)
ch_refresh_project = gr.Button("Refresh", scale=1)
bt_create.click(fn=create_data_project, inputs=[project_name, tokenizer_type], outputs=[cm_project])
with gr.Tabs():
with gr.TabItem("Transcribe Data"):
gr.Markdown("""```plaintext
Skip this step if you have your dataset, metadata.csv, and a folder wavs with all the audio files.
```""")
ch_manual = gr.Checkbox(label="Audio from Path", value=False)
mark_info_transcribe = gr.Markdown(
"""```plaintext
Place your 'wavs' folder and 'metadata.csv' file in the '{your_project_name}' directory.
my_speak/
└── dataset/
├── audio1.wav
└── audio2.wav
...
```""",
visible=False,
)
audio_speaker = gr.File(label="Voice", type="filepath", file_count="multiple")
txt_lang = gr.Textbox(label="Language", value="English")
bt_transcribe = bt_create = gr.Button("Transcribe")
txt_info_transcribe = gr.Textbox(label="Info", value="")
bt_transcribe.click(
fn=transcribe_all,
inputs=[cm_project, audio_speaker, txt_lang, ch_manual],
outputs=[txt_info_transcribe],
)
ch_manual.change(fn=check_user, inputs=[ch_manual], outputs=[audio_speaker, mark_info_transcribe])
random_sample_transcribe = gr.Button("Random Sample")
with gr.Row():
random_text_transcribe = gr.Textbox(label="Text")
random_audio_transcribe = gr.Audio(label="Audio", type="filepath")
random_sample_transcribe.click(
fn=get_random_sample_transcribe,
inputs=[cm_project],
outputs=[random_text_transcribe, random_audio_transcribe],
)
with gr.TabItem("Vocab Check"):
gr.Markdown("""```plaintext
Check the vocabulary for fine-tuning Emilia_ZH_EN to ensure all symbols are included. For fine-tuning a new language.
```""")
check_button = gr.Button("Check Vocab")
txt_info_check = gr.Textbox(label="Info", value="")
gr.Markdown("""```plaintext
Using the extended model, you can finetune to a new language that is missing symbols in the vocab. This creates a new model with a new vocabulary size and saves it in your ckpts/project folder.
```""")
exp_name_extend = gr.Radio(
label="Model", choices=["F5TTS_v1_Base", "F5TTS_Base", "E2TTS_Base"], value="F5TTS_v1_Base"
)
with gr.Row():
txt_extend = gr.Textbox(
label="Symbols",
value="",
placeholder="To add new symbols, make sure to use ',' for each symbol",
scale=6,
)
txt_count_symbol = gr.Textbox(label="New Vocab Size", value="", scale=1)
extend_button = gr.Button("Extend")
txt_info_extend = gr.Textbox(label="Info", value="")
txt_extend.change(vocab_count, inputs=[txt_extend], outputs=[txt_count_symbol])
check_button.click(fn=vocab_check, inputs=[cm_project], outputs=[txt_info_check, txt_extend])
extend_button.click(
fn=vocab_extend, inputs=[cm_project, txt_extend, exp_name_extend], outputs=[txt_info_extend]
)
with gr.TabItem("Prepare Data"):
gr.Markdown("""```plaintext
Skip this step if you have your dataset, raw.arrow, duration.json, and vocab.txt
```""")
gr.Markdown(
"""```plaintext
Place all your "wavs" folder and your "metadata.csv" file in your project name directory.
Supported audio formats: "wav", "mp3", "aac", "flac", "m4a", "alac", "ogg", "aiff", "wma", "amr"
Example wav format:
my_speak/
├── wavs/
│ ├── audio1.wav
│ └── audio2.wav
| ...
└── metadata.csv
File format metadata.csv:
audio1|text1 or audio1.wav|text1 or your_path/audio1.wav|text1
audio2|text1 or audio2.wav|text1 or your_path/audio2.wav|text1
...
```"""
)
ch_tokenizern = gr.Checkbox(label="Create Vocabulary", value=False, visible=False)
bt_prepare = bt_create = gr.Button("Prepare")
txt_info_prepare = gr.Textbox(label="Info", value="")
txt_vocab_prepare = gr.Textbox(label="Vocab", value="")
bt_prepare.click(
fn=create_metadata, inputs=[cm_project, ch_tokenizern], outputs=[txt_info_prepare, txt_vocab_prepare]
)
random_sample_prepare = gr.Button("Random Sample")
with gr.Row():
random_text_prepare = gr.Textbox(label="Tokenizer")
random_audio_prepare = gr.Audio(label="Audio", type="filepath")
random_sample_prepare.click(
fn=get_random_sample_prepare, inputs=[cm_project], outputs=[random_text_prepare, random_audio_prepare]
)
with gr.TabItem("Train Model"):
gr.Markdown("""```plaintext
The auto-setting is still experimental. Set a large value of epoch if not sure; and keep last N checkpoints if limited disk space.
If you encounter a memory error, try reducing the batch size per GPU to a smaller number.
```""")
with gr.Row():
exp_name = gr.Radio(label="Model", choices=["F5TTS_v1_Base", "F5TTS_Base", "E2TTS_Base"])
tokenizer_file = gr.Textbox(label="Tokenizer File")
file_checkpoint_train = gr.Textbox(label="Path to the Pretrained Checkpoint")
with gr.Row():
ch_finetune = bt_create = gr.Checkbox(label="Finetune")
lb_samples = gr.Label(label="Samples")
bt_calculate = bt_create = gr.Button("Auto Settings")
with gr.Row():
epochs = gr.Number(label="Epochs")
learning_rate = gr.Number(label="Learning Rate", step=0.5e-5)
max_grad_norm = gr.Number(label="Max Gradient Norm")
num_warmup_updates = gr.Number(label="Warmup Updates")
with gr.Row():
batch_size_type = gr.Radio(
label="Batch Size Type",
choices=["frame", "sample"],
info="frame is calculated as seconds * sampling_rate / hop_length",
)
batch_size_per_gpu = gr.Number(label="Batch Size per GPU", info="N frames or N samples")
grad_accumulation_steps = gr.Number(
label="Gradient Accumulation Steps", info="Effective batch size is multiplied by this value"
)
max_samples = gr.Number(label="Max Samples", info="Maximum number of samples per single GPU batch")
with gr.Row():
save_per_updates = gr.Number(
label="Save per Updates",
info="Save intermediate checkpoints every N updates",
minimum=10,
)
keep_last_n_checkpoints = gr.Number(
label="Keep Last N Checkpoints",
step=1,
precision=0,
info="-1 to keep all, 0 to not save intermediate, > 0 to keep last N",
minimum=-1,
)
last_per_updates = gr.Number(
label="Last per Updates",
info="Save latest checkpoint with suffix _last.pt every N updates",
minimum=10,
)
gr.Radio(label="") # placeholder
with gr.Row():
ch_8bit_adam = gr.Checkbox(label="Use 8-bit Adam optimizer")
mixed_precision = gr.Radio(label="Mixed Precision", choices=["none", "fp16", "bf16"])
cd_logger = gr.Radio(label="Logger", choices=["none", "wandb", "tensorboard"])
with gr.Column():
start_button = gr.Button("Start Training")
stop_button = gr.Button("Stop Training", interactive=False)
if projects_selelect is not None:
(
exp_name_value,
learning_rate_value,
batch_size_per_gpu_value,
batch_size_type_value,
max_samples_value,
grad_accumulation_steps_value,
max_grad_norm_value,
epochs_value,
num_warmup_updates_value,
save_per_updates_value,
keep_last_n_checkpoints_value,
last_per_updates_value,
finetune_value,
file_checkpoint_train_value,
tokenizer_type_value,
tokenizer_file_value,
mixed_precision_value,
logger_value,
bnb_optimizer_value,
) = load_settings(projects_selelect)
# Assigning values to the respective components
exp_name.value = exp_name_value
learning_rate.value = learning_rate_value
batch_size_per_gpu.value = batch_size_per_gpu_value
batch_size_type.value = batch_size_type_value
max_samples.value = max_samples_value
grad_accumulation_steps.value = grad_accumulation_steps_value
max_grad_norm.value = max_grad_norm_value
epochs.value = epochs_value
num_warmup_updates.value = num_warmup_updates_value
save_per_updates.value = save_per_updates_value
keep_last_n_checkpoints.value = keep_last_n_checkpoints_value
last_per_updates.value = last_per_updates_value
ch_finetune.value = finetune_value
file_checkpoint_train.value = file_checkpoint_train_value
tokenizer_type.value = tokenizer_type_value
tokenizer_file.value = tokenizer_file_value
mixed_precision.value = mixed_precision_value
cd_logger.value = logger_value
ch_8bit_adam.value = bnb_optimizer_value
ch_stream = gr.Checkbox(label="Stream Output Experiment", value=True)
txt_info_train = gr.Textbox(label="Info", value="")
list_audios, select_audio = get_audio_project(projects_selelect, False)
select_audio_ref = select_audio
select_audio_gen = select_audio
if select_audio is not None:
select_audio_ref += "_ref.wav"
select_audio_gen += "_gen.wav"
with gr.Row():
ch_list_audio = gr.Dropdown(
choices=list_audios,
value=select_audio,
label="Audios",
allow_custom_value=True,
scale=6,
interactive=True,
)
bt_stream_audio = gr.Button("Refresh", scale=1)
bt_stream_audio.click(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])
cm_project.change(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])
with gr.Row():
audio_ref_stream = gr.Audio(label="Original", type="filepath", value=select_audio_ref)
audio_gen_stream = gr.Audio(label="Generate", type="filepath", value=select_audio_gen)
ch_list_audio.change(
fn=get_audio_select,
inputs=[ch_list_audio],
outputs=[audio_ref_stream, audio_gen_stream],
)
start_button.click(
fn=start_training,
inputs=[
cm_project,
exp_name,
learning_rate,
batch_size_per_gpu,
batch_size_type,
max_samples,
grad_accumulation_steps,
max_grad_norm,
epochs,
num_warmup_updates,
save_per_updates,
keep_last_n_checkpoints,
last_per_updates,
ch_finetune,
file_checkpoint_train,
tokenizer_type,
tokenizer_file,
mixed_precision,
ch_stream,
cd_logger,
ch_8bit_adam,
],
outputs=[txt_info_train, start_button, stop_button],
)
stop_button.click(fn=stop_training, outputs=[txt_info_train, start_button, stop_button])
bt_calculate.click(
fn=calculate_train,
inputs=[
cm_project,
epochs,
learning_rate,
batch_size_per_gpu,
batch_size_type,
max_samples,
num_warmup_updates,
ch_finetune,
],
outputs=[
epochs,
learning_rate,
batch_size_per_gpu,
max_samples,
num_warmup_updates,
lb_samples,
],
)
ch_finetune.change(
check_finetune, inputs=[ch_finetune], outputs=[file_checkpoint_train, tokenizer_file, tokenizer_type]
)
def setup_load_settings():
output_components = [
exp_name,
learning_rate,
batch_size_per_gpu,
batch_size_type,
max_samples,
grad_accumulation_steps,
max_grad_norm,
epochs,
num_warmup_updates,
save_per_updates,
keep_last_n_checkpoints,
last_per_updates,
ch_finetune,
file_checkpoint_train,
tokenizer_type,
tokenizer_file,
mixed_precision,
cd_logger,
ch_8bit_adam,
]
return output_components
outputs = setup_load_settings()
cm_project.change(
fn=load_settings,
inputs=[cm_project],
outputs=outputs,
)
ch_refresh_project.click(
fn=load_settings,
inputs=[cm_project],
outputs=outputs,
)
with gr.TabItem("Test Model"):
gr.Markdown("""```plaintext
Check the use_ema setting (True or False) for your model to see what works best for you. Set seed to -1 for random.
```""")
exp_name = gr.Radio(
label="Model", choices=["F5TTS_v1_Base", "F5TTS_Base", "E2TTS_Base"], value="F5TTS_v1_Base"
)
list_checkpoints, checkpoint_select = get_checkpoints_project(projects_selelect, False)
with gr.Row():
nfe_step = gr.Number(label="NFE Step", value=32)
speed = gr.Slider(label="Speed", value=1.0, minimum=0.3, maximum=2.0, step=0.1)
seed = gr.Number(label="Random Seed", value=-1, minimum=-1)
remove_silence = gr.Checkbox(label="Remove Silence")
with gr.Row():
ch_use_ema = gr.Checkbox(
label="Use EMA", value=True, info="Turn off at early stage might offer better results"
)
cm_checkpoint = gr.Dropdown(
choices=list_checkpoints, value=checkpoint_select, label="Checkpoints", allow_custom_value=True
)
bt_checkpoint_refresh = gr.Button("Refresh")
random_sample_infer = gr.Button("Random Sample")
ref_text = gr.Textbox(label="Reference Text")
ref_audio = gr.Audio(label="Reference Audio", type="filepath")
gen_text = gr.Textbox(label="Text to Generate")
random_sample_infer.click(
fn=get_random_sample_infer, inputs=[cm_project], outputs=[ref_text, gen_text, ref_audio]
)
with gr.Row():
txt_info_gpu = gr.Textbox("", label="Inference on Device :")
seed_info = gr.Textbox(label="Used Random Seed :")
check_button_infer = gr.Button("Inference")
gen_audio = gr.Audio(label="Generated Audio", type="filepath")
check_button_infer.click(
fn=infer,
inputs=[
cm_project,
cm_checkpoint,
exp_name,
ref_text,
ref_audio,
gen_text,
nfe_step,
ch_use_ema,
speed,
seed,
remove_silence,
],
outputs=[gen_audio, txt_info_gpu, seed_info],
)
bt_checkpoint_refresh.click(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint])
cm_project.change(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint])
with gr.TabItem("Prune Checkpoint"):
gr.Markdown("""```plaintext
Reduce the Base model size from 5GB to 1.3GB. The new checkpoint file prunes out optimizer and etc., can be used for inference or finetuning afterward, but not able to resume pretraining.
```""")
txt_path_checkpoint = gr.Textbox(label="Path to Checkpoint:")
txt_path_checkpoint_small = gr.Textbox(label="Path to Output:")
with gr.Row():
ch_save_ema = gr.Checkbox(label="Save EMA checkpoint", value=True)
ch_safetensors = gr.Checkbox(label="Save with safetensors format", value=True)
txt_info_reduse = gr.Textbox(label="Info", value="")
reduse_button = gr.Button("Prune")
reduse_button.click(
fn=prune_checkpoint,
inputs=[txt_path_checkpoint, txt_path_checkpoint_small, ch_save_ema, ch_safetensors],
outputs=[txt_info_reduse],
)
with gr.TabItem("System Info"):
output_box = gr.Textbox(label="GPU and CPU Information", lines=20)
def update_stats():
return get_combined_stats()
update_button = gr.Button("Update Stats")
update_button.click(fn=update_stats, outputs=output_box)
def auto_update():
yield gr.update(value=update_stats())
gr.update(fn=auto_update, inputs=[], outputs=output_box)
@click.command()
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
@click.option("--host", "-H", default=None, help="Host to run the app on")
@click.option(
"--share",
"-s",
default=False,
is_flag=True,
help="Share the app via Gradio share link",
)
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
def main(port, host, share, api):
global app
print("Starting app...")
app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api)
if __name__ == "__main__":
main()