mrfakename's picture
Sync from GitHub repo
1674828 verified
import argparse
import json
import os
import re
import time
import traceback
from concurrent.futures import ThreadPoolExecutor, as_completed
import safetensors.torch
import torch
from tensorrt_llm import str_dtype_to_torch
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models.convert_utils import split, split_matrix_tp
def split_q_tp(v, n_head, n_hidden, tensor_parallel, rank):
split_v = split(v, tensor_parallel, rank, dim=1)
return split_v.contiguous()
def split_q_bias_tp(v, n_head, n_hidden, tensor_parallel, rank):
split_v = split(v, tensor_parallel, rank, dim=0)
return split_v.contiguous()
FACEBOOK_DIT_NAME_MAPPING = {
"^time_embed.time_mlp.0.weight$": "time_embed.mlp1.weight",
"^time_embed.time_mlp.0.bias$": "time_embed.mlp1.bias",
"^time_embed.time_mlp.2.weight$": "time_embed.mlp2.weight",
"^time_embed.time_mlp.2.bias$": "time_embed.mlp2.bias",
"^input_embed.conv_pos_embed.conv1d.0.weight$": "input_embed.conv_pos_embed.conv1d1.weight",
"^input_embed.conv_pos_embed.conv1d.0.bias$": "input_embed.conv_pos_embed.conv1d1.bias",
"^input_embed.conv_pos_embed.conv1d.2.weight$": "input_embed.conv_pos_embed.conv1d2.weight",
"^input_embed.conv_pos_embed.conv1d.2.bias$": "input_embed.conv_pos_embed.conv1d2.bias",
"^transformer_blocks.0.attn.to_out.0.weight$": "transformer_blocks.0.attn.to_out.weight",
"^transformer_blocks.0.attn.to_out.0.bias$": "transformer_blocks.0.attn.to_out.bias",
"^transformer_blocks.1.attn.to_out.0.weight$": "transformer_blocks.1.attn.to_out.weight",
"^transformer_blocks.1.attn.to_out.0.bias$": "transformer_blocks.1.attn.to_out.bias",
"^transformer_blocks.2.attn.to_out.0.weight$": "transformer_blocks.2.attn.to_out.weight",
"^transformer_blocks.2.attn.to_out.0.bias$": "transformer_blocks.2.attn.to_out.bias",
"^transformer_blocks.3.attn.to_out.0.weight$": "transformer_blocks.3.attn.to_out.weight",
"^transformer_blocks.3.attn.to_out.0.bias$": "transformer_blocks.3.attn.to_out.bias",
"^transformer_blocks.4.attn.to_out.0.weight$": "transformer_blocks.4.attn.to_out.weight",
"^transformer_blocks.4.attn.to_out.0.bias$": "transformer_blocks.4.attn.to_out.bias",
"^transformer_blocks.5.attn.to_out.0.weight$": "transformer_blocks.5.attn.to_out.weight",
"^transformer_blocks.5.attn.to_out.0.bias$": "transformer_blocks.5.attn.to_out.bias",
"^transformer_blocks.6.attn.to_out.0.weight$": "transformer_blocks.6.attn.to_out.weight",
"^transformer_blocks.6.attn.to_out.0.bias$": "transformer_blocks.6.attn.to_out.bias",
"^transformer_blocks.7.attn.to_out.0.weight$": "transformer_blocks.7.attn.to_out.weight",
"^transformer_blocks.7.attn.to_out.0.bias$": "transformer_blocks.7.attn.to_out.bias",
"^transformer_blocks.8.attn.to_out.0.weight$": "transformer_blocks.8.attn.to_out.weight",
"^transformer_blocks.8.attn.to_out.0.bias$": "transformer_blocks.8.attn.to_out.bias",
"^transformer_blocks.9.attn.to_out.0.weight$": "transformer_blocks.9.attn.to_out.weight",
"^transformer_blocks.9.attn.to_out.0.bias$": "transformer_blocks.9.attn.to_out.bias",
"^transformer_blocks.10.attn.to_out.0.weight$": "transformer_blocks.10.attn.to_out.weight",
"^transformer_blocks.10.attn.to_out.0.bias$": "transformer_blocks.10.attn.to_out.bias",
"^transformer_blocks.11.attn.to_out.0.weight$": "transformer_blocks.11.attn.to_out.weight",
"^transformer_blocks.11.attn.to_out.0.bias$": "transformer_blocks.11.attn.to_out.bias",
"^transformer_blocks.12.attn.to_out.0.weight$": "transformer_blocks.12.attn.to_out.weight",
"^transformer_blocks.12.attn.to_out.0.bias$": "transformer_blocks.12.attn.to_out.bias",
"^transformer_blocks.13.attn.to_out.0.weight$": "transformer_blocks.13.attn.to_out.weight",
"^transformer_blocks.13.attn.to_out.0.bias$": "transformer_blocks.13.attn.to_out.bias",
"^transformer_blocks.14.attn.to_out.0.weight$": "transformer_blocks.14.attn.to_out.weight",
"^transformer_blocks.14.attn.to_out.0.bias$": "transformer_blocks.14.attn.to_out.bias",
"^transformer_blocks.15.attn.to_out.0.weight$": "transformer_blocks.15.attn.to_out.weight",
"^transformer_blocks.15.attn.to_out.0.bias$": "transformer_blocks.15.attn.to_out.bias",
"^transformer_blocks.16.attn.to_out.0.weight$": "transformer_blocks.16.attn.to_out.weight",
"^transformer_blocks.16.attn.to_out.0.bias$": "transformer_blocks.16.attn.to_out.bias",
"^transformer_blocks.17.attn.to_out.0.weight$": "transformer_blocks.17.attn.to_out.weight",
"^transformer_blocks.17.attn.to_out.0.bias$": "transformer_blocks.17.attn.to_out.bias",
"^transformer_blocks.18.attn.to_out.0.weight$": "transformer_blocks.18.attn.to_out.weight",
"^transformer_blocks.18.attn.to_out.0.bias$": "transformer_blocks.18.attn.to_out.bias",
"^transformer_blocks.19.attn.to_out.0.weight$": "transformer_blocks.19.attn.to_out.weight",
"^transformer_blocks.19.attn.to_out.0.bias$": "transformer_blocks.19.attn.to_out.bias",
"^transformer_blocks.20.attn.to_out.0.weight$": "transformer_blocks.20.attn.to_out.weight",
"^transformer_blocks.20.attn.to_out.0.bias$": "transformer_blocks.20.attn.to_out.bias",
"^transformer_blocks.21.attn.to_out.0.weight$": "transformer_blocks.21.attn.to_out.weight",
"^transformer_blocks.21.attn.to_out.0.bias$": "transformer_blocks.21.attn.to_out.bias",
"^transformer_blocks.0.ff.ff.0.0.weight$": "transformer_blocks.0.ff.project_in.weight",
"^transformer_blocks.0.ff.ff.0.0.bias$": "transformer_blocks.0.ff.project_in.bias",
"^transformer_blocks.0.ff.ff.2.weight$": "transformer_blocks.0.ff.ff.weight",
"^transformer_blocks.0.ff.ff.2.bias$": "transformer_blocks.0.ff.ff.bias",
"^transformer_blocks.1.ff.ff.0.0.weight$": "transformer_blocks.1.ff.project_in.weight",
"^transformer_blocks.1.ff.ff.0.0.bias$": "transformer_blocks.1.ff.project_in.bias",
"^transformer_blocks.1.ff.ff.2.weight$": "transformer_blocks.1.ff.ff.weight",
"^transformer_blocks.1.ff.ff.2.bias$": "transformer_blocks.1.ff.ff.bias",
"^transformer_blocks.2.ff.ff.0.0.weight$": "transformer_blocks.2.ff.project_in.weight",
"^transformer_blocks.2.ff.ff.0.0.bias$": "transformer_blocks.2.ff.project_in.bias",
"^transformer_blocks.2.ff.ff.2.weight$": "transformer_blocks.2.ff.ff.weight",
"^transformer_blocks.2.ff.ff.2.bias$": "transformer_blocks.2.ff.ff.bias",
"^transformer_blocks.3.ff.ff.0.0.weight$": "transformer_blocks.3.ff.project_in.weight",
"^transformer_blocks.3.ff.ff.0.0.bias$": "transformer_blocks.3.ff.project_in.bias",
"^transformer_blocks.3.ff.ff.2.weight$": "transformer_blocks.3.ff.ff.weight",
"^transformer_blocks.3.ff.ff.2.bias$": "transformer_blocks.3.ff.ff.bias",
"^transformer_blocks.4.ff.ff.0.0.weight$": "transformer_blocks.4.ff.project_in.weight",
"^transformer_blocks.4.ff.ff.0.0.bias$": "transformer_blocks.4.ff.project_in.bias",
"^transformer_blocks.4.ff.ff.2.weight$": "transformer_blocks.4.ff.ff.weight",
"^transformer_blocks.4.ff.ff.2.bias$": "transformer_blocks.4.ff.ff.bias",
"^transformer_blocks.5.ff.ff.0.0.weight$": "transformer_blocks.5.ff.project_in.weight",
"^transformer_blocks.5.ff.ff.0.0.bias$": "transformer_blocks.5.ff.project_in.bias",
"^transformer_blocks.5.ff.ff.2.weight$": "transformer_blocks.5.ff.ff.weight",
"^transformer_blocks.5.ff.ff.2.bias$": "transformer_blocks.5.ff.ff.bias",
"^transformer_blocks.6.ff.ff.0.0.weight$": "transformer_blocks.6.ff.project_in.weight",
"^transformer_blocks.6.ff.ff.0.0.bias$": "transformer_blocks.6.ff.project_in.bias",
"^transformer_blocks.6.ff.ff.2.weight$": "transformer_blocks.6.ff.ff.weight",
"^transformer_blocks.6.ff.ff.2.bias$": "transformer_blocks.6.ff.ff.bias",
"^transformer_blocks.7.ff.ff.0.0.weight$": "transformer_blocks.7.ff.project_in.weight",
"^transformer_blocks.7.ff.ff.0.0.bias$": "transformer_blocks.7.ff.project_in.bias",
"^transformer_blocks.7.ff.ff.2.weight$": "transformer_blocks.7.ff.ff.weight",
"^transformer_blocks.7.ff.ff.2.bias$": "transformer_blocks.7.ff.ff.bias",
"^transformer_blocks.8.ff.ff.0.0.weight$": "transformer_blocks.8.ff.project_in.weight",
"^transformer_blocks.8.ff.ff.0.0.bias$": "transformer_blocks.8.ff.project_in.bias",
"^transformer_blocks.8.ff.ff.2.weight$": "transformer_blocks.8.ff.ff.weight",
"^transformer_blocks.8.ff.ff.2.bias$": "transformer_blocks.8.ff.ff.bias",
"^transformer_blocks.9.ff.ff.0.0.weight$": "transformer_blocks.9.ff.project_in.weight",
"^transformer_blocks.9.ff.ff.0.0.bias$": "transformer_blocks.9.ff.project_in.bias",
"^transformer_blocks.9.ff.ff.2.weight$": "transformer_blocks.9.ff.ff.weight",
"^transformer_blocks.9.ff.ff.2.bias$": "transformer_blocks.9.ff.ff.bias",
"^transformer_blocks.10.ff.ff.0.0.weight$": "transformer_blocks.10.ff.project_in.weight",
"^transformer_blocks.10.ff.ff.0.0.bias$": "transformer_blocks.10.ff.project_in.bias",
"^transformer_blocks.10.ff.ff.2.weight$": "transformer_blocks.10.ff.ff.weight",
"^transformer_blocks.10.ff.ff.2.bias$": "transformer_blocks.10.ff.ff.bias",
"^transformer_blocks.11.ff.ff.0.0.weight$": "transformer_blocks.11.ff.project_in.weight",
"^transformer_blocks.11.ff.ff.0.0.bias$": "transformer_blocks.11.ff.project_in.bias",
"^transformer_blocks.11.ff.ff.2.weight$": "transformer_blocks.11.ff.ff.weight",
"^transformer_blocks.11.ff.ff.2.bias$": "transformer_blocks.11.ff.ff.bias",
"^transformer_blocks.12.ff.ff.0.0.weight$": "transformer_blocks.12.ff.project_in.weight",
"^transformer_blocks.12.ff.ff.0.0.bias$": "transformer_blocks.12.ff.project_in.bias",
"^transformer_blocks.12.ff.ff.2.weight$": "transformer_blocks.12.ff.ff.weight",
"^transformer_blocks.12.ff.ff.2.bias$": "transformer_blocks.12.ff.ff.bias",
"^transformer_blocks.13.ff.ff.0.0.weight$": "transformer_blocks.13.ff.project_in.weight",
"^transformer_blocks.13.ff.ff.0.0.bias$": "transformer_blocks.13.ff.project_in.bias",
"^transformer_blocks.13.ff.ff.2.weight$": "transformer_blocks.13.ff.ff.weight",
"^transformer_blocks.13.ff.ff.2.bias$": "transformer_blocks.13.ff.ff.bias",
"^transformer_blocks.14.ff.ff.0.0.weight$": "transformer_blocks.14.ff.project_in.weight",
"^transformer_blocks.14.ff.ff.0.0.bias$": "transformer_blocks.14.ff.project_in.bias",
"^transformer_blocks.14.ff.ff.2.weight$": "transformer_blocks.14.ff.ff.weight",
"^transformer_blocks.14.ff.ff.2.bias$": "transformer_blocks.14.ff.ff.bias",
"^transformer_blocks.15.ff.ff.0.0.weight$": "transformer_blocks.15.ff.project_in.weight",
"^transformer_blocks.15.ff.ff.0.0.bias$": "transformer_blocks.15.ff.project_in.bias",
"^transformer_blocks.15.ff.ff.2.weight$": "transformer_blocks.15.ff.ff.weight",
"^transformer_blocks.15.ff.ff.2.bias$": "transformer_blocks.15.ff.ff.bias",
"^transformer_blocks.16.ff.ff.0.0.weight$": "transformer_blocks.16.ff.project_in.weight",
"^transformer_blocks.16.ff.ff.0.0.bias$": "transformer_blocks.16.ff.project_in.bias",
"^transformer_blocks.16.ff.ff.2.weight$": "transformer_blocks.16.ff.ff.weight",
"^transformer_blocks.16.ff.ff.2.bias$": "transformer_blocks.16.ff.ff.bias",
"^transformer_blocks.17.ff.ff.0.0.weight$": "transformer_blocks.17.ff.project_in.weight",
"^transformer_blocks.17.ff.ff.0.0.bias$": "transformer_blocks.17.ff.project_in.bias",
"^transformer_blocks.17.ff.ff.2.weight$": "transformer_blocks.17.ff.ff.weight",
"^transformer_blocks.17.ff.ff.2.bias$": "transformer_blocks.17.ff.ff.bias",
"^transformer_blocks.18.ff.ff.0.0.weight$": "transformer_blocks.18.ff.project_in.weight",
"^transformer_blocks.18.ff.ff.0.0.bias$": "transformer_blocks.18.ff.project_in.bias",
"^transformer_blocks.18.ff.ff.2.weight$": "transformer_blocks.18.ff.ff.weight",
"^transformer_blocks.18.ff.ff.2.bias$": "transformer_blocks.18.ff.ff.bias",
"^transformer_blocks.19.ff.ff.0.0.weight$": "transformer_blocks.19.ff.project_in.weight",
"^transformer_blocks.19.ff.ff.0.0.bias$": "transformer_blocks.19.ff.project_in.bias",
"^transformer_blocks.19.ff.ff.2.weight$": "transformer_blocks.19.ff.ff.weight",
"^transformer_blocks.19.ff.ff.2.bias$": "transformer_blocks.19.ff.ff.bias",
"^transformer_blocks.20.ff.ff.0.0.weight$": "transformer_blocks.20.ff.project_in.weight",
"^transformer_blocks.20.ff.ff.0.0.bias$": "transformer_blocks.20.ff.project_in.bias",
"^transformer_blocks.20.ff.ff.2.weight$": "transformer_blocks.20.ff.ff.weight",
"^transformer_blocks.20.ff.ff.2.bias$": "transformer_blocks.20.ff.ff.bias",
"^transformer_blocks.21.ff.ff.0.0.weight$": "transformer_blocks.21.ff.project_in.weight",
"^transformer_blocks.21.ff.ff.0.0.bias$": "transformer_blocks.21.ff.project_in.bias",
"^transformer_blocks.21.ff.ff.2.weight$": "transformer_blocks.21.ff.ff.weight",
"^transformer_blocks.21.ff.ff.2.bias$": "transformer_blocks.21.ff.ff.bias",
}
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
type=str,
default="F5TTS_Base",
choices=[
"F5TTS_Base",
],
) # TODO: support F5TTS_v1_Base
parser.add_argument("--timm_ckpt", type=str, default="./ckpts/model_1200000.pt")
parser.add_argument(
"--output_dir", type=str, default="./tllm_checkpoint", help="The path to save the TensorRT-LLM checkpoint"
)
parser.add_argument("--hidden_size", type=int, default=1024, help="The hidden size of DiT")
parser.add_argument("--depth", type=int, default=22, help="The number of DiTBlock layers")
parser.add_argument("--num_heads", type=int, default=16, help="The number of heads of attention module")
parser.add_argument("--cfg_scale", type=float, default=4.0)
parser.add_argument("--tp_size", type=int, default=1, help="N-way tensor parallelism size")
parser.add_argument("--cp_size", type=int, default=1, help="Context parallelism size")
parser.add_argument("--pp_size", type=int, default=1, help="N-way pipeline parallelism size")
parser.add_argument("--dtype", type=str, default="float16", choices=["float32", "bfloat16", "float16"])
parser.add_argument("--fp8_linear", action="store_true", help="Whether use FP8 for linear layers")
parser.add_argument(
"--workers", type=int, default=1, help="The number of workers for converting checkpoint in parallel"
)
args = parser.parse_args()
return args
def convert_timm_dit(args, mapping, dtype="float32"):
weights = {}
tik = time.time()
torch_dtype = str_dtype_to_torch(dtype)
tensor_parallel = mapping.tp_size
model_params = dict(torch.load(args.timm_ckpt))
model_params = {
k: v for k, v in model_params["ema_model_state_dict"].items() if k.startswith("ema_model.transformer")
}
prefix = "ema_model.transformer."
model_params = {key[len(prefix) :] if key.startswith(prefix) else key: value for key, value in model_params.items()}
timm_to_trtllm_name = FACEBOOK_DIT_NAME_MAPPING
def get_trtllm_name(timm_name):
for k, v in timm_to_trtllm_name.items():
m = re.match(k, timm_name)
if m is not None:
if "*" in v:
v = v.replace("*", m.groups()[0])
return v
return timm_name
weights = dict()
for name, param in model_params.items():
if name == "input_embed.conv_pos_embed.conv1d.0.weight" or name == "input_embed.conv_pos_embed.conv1d.2.weight":
weights[get_trtllm_name(name)] = param.contiguous().to(torch_dtype).unsqueeze(-1)
else:
weights[get_trtllm_name(name)] = param.contiguous().to(torch_dtype)
assert len(weights) == len(model_params)
# new_prefix = 'f5_transformer.'
new_prefix = ""
weights = {new_prefix + key: value for key, value in weights.items()}
import math
scale_factor = math.pow(64, -0.25)
for k, v in weights.items():
if re.match("^transformer_blocks.*.attn.to_k.weight$", k):
weights[k] *= scale_factor
weights[k] = split_q_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank)
elif re.match("^transformer_blocks.*.attn.to_k.bias$", k):
weights[k] *= scale_factor
weights[k] = split_q_bias_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank)
elif re.match("^transformer_blocks.*.attn.to_q.weight$", k):
weights[k] = split_q_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank)
weights[k] *= scale_factor
elif re.match("^transformer_blocks.*.attn.to_q.bias$", k):
weights[k] = split_q_bias_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank)
weights[k] *= scale_factor
elif re.match("^transformer_blocks.*.attn.to_v.weight$", k):
weights[k] = split_q_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank)
elif re.match("^transformer_blocks.*.attn.to_v.bias$", k):
weights[k] = split_q_bias_tp(v, args.num_heads, args.hidden_size, tensor_parallel, mapping.tp_rank)
elif re.match("^transformer_blocks.*.attn.to_out.weight$", k):
weights[k] = split_matrix_tp(v, tensor_parallel, mapping.tp_rank, dim=1)
tok = time.time()
t = time.strftime("%H:%M:%S", time.gmtime(tok - tik))
print(f"Weights loaded. Total time: {t}")
return weights
def save_config(args):
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
config = {
"architecture": "F5TTS",
"dtype": args.dtype,
"hidden_size": 1024,
"num_hidden_layers": 22,
"num_attention_heads": 16,
"dim_head": 64,
"dropout": 0.1,
"ff_mult": 2,
"mel_dim": 100,
"text_num_embeds": 256,
"text_dim": 512,
"conv_layers": 4,
"long_skip_connection": False,
"mapping": {
"world_size": args.cp_size * args.tp_size * args.pp_size,
"cp_size": args.cp_size,
"tp_size": args.tp_size,
"pp_size": args.pp_size,
},
}
if args.fp8_linear:
config["quantization"] = {
"quant_algo": "FP8",
# TODO: add support for exclude modules.
# 'exclude_modules': "*final_layer*",
}
with open(os.path.join(args.output_dir, "config.json"), "w") as f:
json.dump(config, f, indent=4)
def covert_and_save(args, rank):
if rank == 0:
save_config(args)
mapping = Mapping(
world_size=args.cp_size * args.tp_size * args.pp_size,
rank=rank,
cp_size=args.cp_size,
tp_size=args.tp_size,
pp_size=args.pp_size,
)
weights = convert_timm_dit(args, mapping, dtype=args.dtype)
safetensors.torch.save_file(weights, os.path.join(args.output_dir, f"rank{rank}.safetensors"))
def execute(workers, func, args):
if workers == 1:
for rank, f in enumerate(func):
f(args, rank)
else:
with ThreadPoolExecutor(max_workers=workers) as p:
futures = [p.submit(f, args, rank) for rank, f in enumerate(func)]
exceptions = []
for future in as_completed(futures):
try:
future.result()
except Exception as e:
traceback.print_exc()
exceptions.append(e)
assert len(exceptions) == 0, "Checkpoint conversion failed, please check error log."
def main():
args = parse_arguments()
world_size = args.cp_size * args.tp_size * args.pp_size
assert args.pp_size == 1, "PP is not supported yet."
tik = time.time()
if args.timm_ckpt is None:
return
print("start execute")
execute(args.workers, [covert_and_save] * world_size, args)
tok = time.time()
t = time.strftime("%H:%M:%S", time.gmtime(tok - tik))
print(f"Total time of converting checkpoints: {t}")
if __name__ == "__main__":
main()