Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,135 Bytes
1674828 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# Modified from https://github.com/echocatzh/conv-stft/blob/master/conv_stft/conv_stft.py
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# MIT License
# Copyright (c) 2020 Shimin Zhang
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch as th
import torch.nn.functional as F
from scipy.signal import check_COLA, get_window
support_clp_op = None
if th.__version__ >= "1.7.0":
from torch.fft import rfft as fft
support_clp_op = True
else:
from torch import rfft as fft
class STFT(th.nn.Module):
def __init__(
self,
win_len=1024,
win_hop=512,
fft_len=1024,
enframe_mode="continue",
win_type="hann",
win_sqrt=False,
pad_center=True,
):
"""
Implement of STFT using 1D convolution and 1D transpose convolutions.
Implement of framing the signal in 2 ways, `break` and `continue`.
`break` method is a kaldi-like framing.
`continue` method is a librosa-like framing.
More information about `perfect reconstruction`:
1. https://ww2.mathworks.cn/help/signal/ref/stft.html
2. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.get_window.html
Args:
win_len (int): Number of points in one frame. Defaults to 1024.
win_hop (int): Number of framing stride. Defaults to 512.
fft_len (int): Number of DFT points. Defaults to 1024.
enframe_mode (str, optional): `break` and `continue`. Defaults to 'continue'.
win_type (str, optional): The type of window to create. Defaults to 'hann'.
win_sqrt (bool, optional): using square root window. Defaults to True.
pad_center (bool, optional): `perfect reconstruction` opts. Defaults to True.
"""
super(STFT, self).__init__()
assert enframe_mode in ["break", "continue"]
assert fft_len >= win_len
self.win_len = win_len
self.win_hop = win_hop
self.fft_len = fft_len
self.mode = enframe_mode
self.win_type = win_type
self.win_sqrt = win_sqrt
self.pad_center = pad_center
self.pad_amount = self.fft_len // 2
en_k, fft_k, ifft_k, ola_k = self.__init_kernel__()
self.register_buffer("en_k", en_k)
self.register_buffer("fft_k", fft_k)
self.register_buffer("ifft_k", ifft_k)
self.register_buffer("ola_k", ola_k)
def __init_kernel__(self):
"""
Generate enframe_kernel, fft_kernel, ifft_kernel and overlap-add kernel.
** enframe_kernel: Using conv1d layer and identity matrix.
** fft_kernel: Using linear layer for matrix multiplication. In fact,
enframe_kernel and fft_kernel can be combined, But for the sake of
readability, I took the two apart.
** ifft_kernel, pinv of fft_kernel.
** overlap-add kernel, just like enframe_kernel, but transposed.
Returns:
tuple: four kernels.
"""
enframed_kernel = th.eye(self.fft_len)[:, None, :]
if support_clp_op:
tmp = fft(th.eye(self.fft_len))
fft_kernel = th.stack([tmp.real, tmp.imag], dim=2)
else:
fft_kernel = fft(th.eye(self.fft_len), 1)
if self.mode == "break":
enframed_kernel = th.eye(self.win_len)[:, None, :]
fft_kernel = fft_kernel[: self.win_len]
fft_kernel = th.cat((fft_kernel[:, :, 0], fft_kernel[:, :, 1]), dim=1)
ifft_kernel = th.pinverse(fft_kernel)[:, None, :]
window = get_window(self.win_type, self.win_len)
self.perfect_reconstruct = check_COLA(window, self.win_len, self.win_len - self.win_hop)
window = th.FloatTensor(window)
if self.mode == "continue":
left_pad = (self.fft_len - self.win_len) // 2
right_pad = left_pad + (self.fft_len - self.win_len) % 2
window = F.pad(window, (left_pad, right_pad))
if self.win_sqrt:
self.padded_window = window
window = th.sqrt(window)
else:
self.padded_window = window**2
fft_kernel = fft_kernel.T * window
ifft_kernel = ifft_kernel * window
ola_kernel = th.eye(self.fft_len)[: self.win_len, None, :]
if self.mode == "continue":
ola_kernel = th.eye(self.fft_len)[:, None, : self.fft_len]
return enframed_kernel, fft_kernel, ifft_kernel, ola_kernel
def is_perfect(self):
"""
Whether the parameters win_len, win_hop and win_sqrt
obey constants overlap-add(COLA)
Returns:
bool: Return true if parameters obey COLA.
"""
return self.perfect_reconstruct and self.pad_center
def transform(self, inputs, return_type="complex"):
"""Take input data (audio) to STFT domain.
Args:
inputs (tensor): Tensor of floats, with shape (num_batch, num_samples)
return_type (str, optional): return (mag, phase) when `magphase`,
return (real, imag) when `realimag` and complex(real, imag) when `complex`.
Defaults to 'complex'.
Returns:
tuple: (mag, phase) when `magphase`, return (real, imag) when
`realimag`. Defaults to 'complex', each elements with shape
[num_batch, num_frequencies, num_frames]
"""
assert return_type in ["magphase", "realimag", "complex"]
if inputs.dim() == 2:
inputs = th.unsqueeze(inputs, 1)
self.num_samples = inputs.size(-1)
if self.pad_center:
inputs = F.pad(inputs, (self.pad_amount, self.pad_amount), mode="reflect")
enframe_inputs = F.conv1d(inputs, self.en_k, stride=self.win_hop)
outputs = th.transpose(enframe_inputs, 1, 2)
outputs = F.linear(outputs, self.fft_k)
outputs = th.transpose(outputs, 1, 2)
dim = self.fft_len // 2 + 1
real = outputs[:, :dim, :]
imag = outputs[:, dim:, :]
if return_type == "realimag":
return real, imag
elif return_type == "complex":
assert support_clp_op
return th.complex(real, imag)
else:
mags = th.sqrt(real**2 + imag**2)
phase = th.atan2(imag, real)
return mags, phase
def inverse(self, input1, input2=None, input_type="magphase"):
"""Call the inverse STFT (iSTFT), given tensors produced
by the `transform` function.
Args:
input1 (tensors): Magnitude/Real-part of STFT with shape
[num_batch, num_frequencies, num_frames]
input2 (tensors): Phase/Imag-part of STFT with shape
[num_batch, num_frequencies, num_frames]
input_type (str, optional): Mathematical meaning of input tensor's.
Defaults to 'magphase'.
Returns:
tensors: Reconstructed audio given magnitude and phase. Of
shape [num_batch, num_samples]
"""
assert input_type in ["magphase", "realimag"]
if input_type == "realimag":
real, imag = None, None
if support_clp_op and th.is_complex(input1):
real, imag = input1.real, input1.imag
else:
real, imag = input1, input2
else:
real = input1 * th.cos(input2)
imag = input1 * th.sin(input2)
inputs = th.cat([real, imag], dim=1)
outputs = F.conv_transpose1d(inputs, self.ifft_k, stride=self.win_hop)
t = (self.padded_window[None, :, None]).repeat(1, 1, inputs.size(-1))
t = t.to(inputs.device)
coff = F.conv_transpose1d(t, self.ola_k, stride=self.win_hop)
num_frames = input1.size(-1)
num_samples = num_frames * self.win_hop
rm_start, rm_end = self.pad_amount, self.pad_amount + num_samples
outputs = outputs[..., rm_start:rm_end]
coff = coff[..., rm_start:rm_end]
coffidx = th.where(coff > 1e-8)
outputs[coffidx] = outputs[coffidx] / (coff[coffidx])
return outputs.squeeze(dim=1)
def forward(self, inputs):
"""Take input data (audio) to STFT domain and then back to audio.
Args:
inputs (tensor): Tensor of floats, with shape [num_batch, num_samples]
Returns:
tensor: Reconstructed audio given magnitude and phase.
Of shape [num_batch, num_samples]
"""
mag, phase = self.transform(inputs)
rec_wav = self.inverse(mag, phase)
return rec_wav
|