File size: 7,593 Bytes
1674828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from __future__ import annotations
import sys
import os

import tensorrt as trt
from collections import OrderedDict
from ..._utils import str_dtype_to_trt
from ...plugin import current_all_reduce_helper
from ..modeling_utils import PretrainedConfig, PretrainedModel
from ...functional import Tensor, concat
from ...module import Module, ModuleList
from tensorrt_llm._common import default_net
from ...layers import Linear

from .modules import (
    TimestepEmbedding,
    ConvPositionEmbedding,
    DiTBlock,
    AdaLayerNormZero_Final,
)

current_file_path = os.path.abspath(__file__)
parent_dir = os.path.dirname(current_file_path)
sys.path.append(parent_dir)


class InputEmbedding(Module):
    def __init__(self, mel_dim, text_dim, out_dim):
        super().__init__()
        self.proj = Linear(mel_dim * 2 + text_dim, out_dim)
        self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)

    def forward(self, x, cond):
        x = self.proj(concat([x, cond], dim=-1))
        return self.conv_pos_embed(x) + x


class F5TTS(PretrainedModel):
    def __init__(self, config: PretrainedConfig):
        super().__init__(config)
        self.dtype = str_dtype_to_trt(config.dtype)

        self.time_embed = TimestepEmbedding(config.hidden_size)
        self.input_embed = InputEmbedding(config.mel_dim, config.text_dim, config.hidden_size)

        self.dim = config.hidden_size
        self.depth = config.num_hidden_layers
        self.transformer_blocks = ModuleList(
            [
                DiTBlock(
                    dim=self.dim,
                    heads=config.num_attention_heads,
                    dim_head=config.dim_head,
                    ff_mult=config.ff_mult,
                    dropout=config.dropout,
                )
                for _ in range(self.depth)
            ]
        )

        self.norm_out = AdaLayerNormZero_Final(config.hidden_size)  # final modulation
        self.proj_out = Linear(config.hidden_size, config.mel_dim)

    def forward(
        self,
        noise,  # nosied input audio
        cond,  # masked cond audio
        time,  # time step
        rope_cos,
        rope_sin,
        input_lengths,
        scale=1.0,
    ):
        t = self.time_embed(time)
        x = self.input_embed(noise, cond)
        for block in self.transformer_blocks:
            x = block(x, t, rope_cos=rope_cos, rope_sin=rope_sin, input_lengths=input_lengths, scale=scale)
        denoise = self.proj_out(self.norm_out(x, t))
        denoise.mark_output("denoised", self.dtype)
        return denoise

    def prepare_inputs(self, **kwargs):
        max_batch_size = kwargs["max_batch_size"]
        batch_size_range = [2, 2, max_batch_size]
        mel_size = 100
        max_seq_len = 3000
        num_frames_range = [200, 2 * max_seq_len, max_seq_len * max_batch_size]
        hidden_size = 512
        concat_feature_dim = mel_size + hidden_size
        freq_embed_dim = 256
        head_dim = 64
        mapping = self.config.mapping
        if mapping.tp_size > 1:
            current_all_reduce_helper().set_workspace_tensor(mapping, 1)
        if default_net().plugin_config.remove_input_padding:
            noise = Tensor(
                name="noise",
                dtype=self.dtype,
                shape=[-1, mel_size],
                dim_range=OrderedDict(
                    [
                        ("num_frames", [num_frames_range]),
                        ("n_mels", [mel_size]),
                    ]
                ),
            )
            cond = Tensor(
                name="cond",
                dtype=self.dtype,
                shape=[-1, concat_feature_dim],
                dim_range=OrderedDict(
                    [
                        ("num_frames", [num_frames_range]),
                        ("embeded_length", [concat_feature_dim]),
                    ]
                ),
            )
            time = Tensor(
                name="time",
                dtype=self.dtype,
                shape=[-1, freq_embed_dim],
                dim_range=OrderedDict(
                    [
                        ("num_frames", [num_frames_range]),
                        ("freq_dim", [freq_embed_dim]),
                    ]
                ),
            )
            rope_cos = Tensor(
                name="rope_cos",
                dtype=self.dtype,
                shape=[-1, head_dim],
                dim_range=OrderedDict(
                    [
                        ("num_frames", [num_frames_range]),
                        ("head_dim", [head_dim]),
                    ]
                ),
            )
            rope_sin = Tensor(
                name="rope_sin",
                dtype=self.dtype,
                shape=[-1, head_dim],
                dim_range=OrderedDict(
                    [
                        ("num_frames", [num_frames_range]),
                        ("head_dim", [head_dim]),
                    ]
                ),
            )

        else:
            noise = Tensor(
                name="noise",
                dtype=self.dtype,
                shape=[-1, -1, mel_size],
                dim_range=OrderedDict(
                    [
                        ("batch_size", [batch_size_range]),
                        ("max_duratuion", [[100, max_seq_len // 2, max_seq_len]]),
                        ("n_mels", [mel_size]),
                    ]
                ),
            )
            cond = Tensor(
                name="cond",
                dtype=self.dtype,
                shape=[-1, -1, concat_feature_dim],
                dim_range=OrderedDict(
                    [
                        ("batch_size", [batch_size_range]),
                        ("max_duratuion", [[100, max_seq_len // 2, max_seq_len]]),
                        ("embeded_length", [concat_feature_dim]),
                    ]
                ),
            )
            time = Tensor(
                name="time",
                dtype=self.dtype,
                shape=[-1, freq_embed_dim],
                dim_range=OrderedDict(
                    [
                        ("batch_size", [batch_size_range]),
                        ("freq_dim", [freq_embed_dim]),
                    ]
                ),
            )
            rope_cos = Tensor(
                name="rope_cos",
                dtype=self.dtype,
                shape=[-1, -1, head_dim],
                dim_range=OrderedDict(
                    [
                        ("batch_size", [batch_size_range]),
                        ("max_duratuion", [[100, max_seq_len // 2, max_seq_len]]),
                        ("head_dim", [head_dim]),
                    ]
                ),
            )
            rope_sin = Tensor(
                name="rope_sin",
                dtype=self.dtype,
                shape=[-1, -1, head_dim],
                dim_range=OrderedDict(
                    [
                        ("batch_size", [batch_size_range]),
                        ("max_duratuion", [[100, max_seq_len // 2, max_seq_len]]),
                        ("head_dim", [head_dim]),
                    ]
                ),
            )
        input_lengths = Tensor(
            name="input_lengths",
            dtype=trt.int32,
            shape=[-1],
            dim_range=OrderedDict([("batch_size", [batch_size_range])]),
        )
        return {
            "noise": noise,
            "cond": cond,
            "time": time,
            "rope_cos": rope_cos,
            "rope_sin": rope_sin,
            "input_lengths": input_lengths,
        }