Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,743 Bytes
4dab15f 1a19e0f b315dd9 4dab15f 43bc5dc 1a19e0f fededd1 43bc5dc fededd1 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 43bc5dc 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f 1a19e0f 4dab15f fededd1 4dab15f 1a19e0f 4dab15f fededd1 4dab15f fededd1 4dab15f fededd1 4dab15f fededd1 57b3db8 fededd1 57b3db8 fededd1 57b3db8 fededd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import os
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" # for MPS device compatibility
from importlib.resources import files
import torch
import torch.nn.functional as F
import torchaudio
from hydra.utils import get_class
from omegaconf import OmegaConf
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder, save_spectrogram
from f5_tts.model import CFM
from f5_tts.model.utils import convert_char_to_pinyin, get_tokenizer
device = (
"cuda"
if torch.cuda.is_available()
else "xpu"
if torch.xpu.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
# ---------------------- infer setting ---------------------- #
seed = None # int | None
exp_name = "F5TTS_v1_Base" # F5TTS_v1_Base | E2TTS_Base
ckpt_step = 1250000
nfe_step = 32 # 16, 32
cfg_strength = 2.0
ode_method = "euler" # euler | midpoint
sway_sampling_coef = -1.0
speed = 1.0
target_rms = 0.1
model_cfg = OmegaConf.load(str(files("f5_tts").joinpath(f"configs/{exp_name}.yaml")))
model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
model_arc = model_cfg.model.arch
dataset_name = model_cfg.datasets.name
tokenizer = model_cfg.model.tokenizer
mel_spec_type = model_cfg.model.mel_spec.mel_spec_type
target_sample_rate = model_cfg.model.mel_spec.target_sample_rate
n_mel_channels = model_cfg.model.mel_spec.n_mel_channels
hop_length = model_cfg.model.mel_spec.hop_length
win_length = model_cfg.model.mel_spec.win_length
n_fft = model_cfg.model.mel_spec.n_fft
ckpt_path = str(files("f5_tts").joinpath("../../")) + f"ckpts/{exp_name}/model_{ckpt_step}.safetensors"
output_dir = "tests"
# [leverage https://github.com/MahmoudAshraf97/ctc-forced-aligner to get char level alignment]
# pip install git+https://github.com/MahmoudAshraf97/ctc-forced-aligner.git
# [write the origin_text into a file, e.g. tests/test_edit.txt]
# ctc-forced-aligner --audio_path "src/f5_tts/infer/examples/basic/basic_ref_en.wav" --text_path "tests/test_edit.txt" --language "zho" --romanize --split_size "char"
# [result will be saved at same path of audio file]
# [--language "zho" for Chinese, "eng" for English]
# [if local ckpt, set --alignment_model "../checkpoints/mms-300m-1130-forced-aligner"]
audio_to_edit = str(files("f5_tts").joinpath("infer/examples/basic/basic_ref_en.wav"))
origin_text = "Some call me nature, others call me mother nature."
target_text = "Some call me optimist, others call me realist."
parts_to_edit = [
[1.42, 2.44],
[4.04, 4.9],
] # stard_ends of "nature" & "mother nature", in seconds
fix_duration = [
1.2,
1,
] # fix duration for "optimist" & "realist", in seconds
# audio_to_edit = "src/f5_tts/infer/examples/basic/basic_ref_zh.wav"
# origin_text = "对,这就是我,万人敬仰的太乙真人。"
# target_text = "对,那就是你,万人敬仰的太白金星。"
# parts_to_edit = [[0.84, 1.4], [1.92, 2.4], [4.26, 6.26], ]
# fix_duration = None # use origin text duration
# -------------------------------------------------#
use_ema = True
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Vocoder model
local = False
if mel_spec_type == "vocos":
vocoder_local_path = "../checkpoints/charactr/vocos-mel-24khz"
elif mel_spec_type == "bigvgan":
vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
vocoder = load_vocoder(vocoder_name=mel_spec_type, is_local=local, local_path=vocoder_local_path)
# Tokenizer
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
# Model
model = CFM(
transformer=model_cls(**model_arc, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
mel_spec_kwargs=dict(
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
n_mel_channels=n_mel_channels,
target_sample_rate=target_sample_rate,
mel_spec_type=mel_spec_type,
),
odeint_kwargs=dict(
method=ode_method,
),
vocab_char_map=vocab_char_map,
).to(device)
dtype = torch.float32 if mel_spec_type == "bigvgan" else None
model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)
# Audio
audio, sr = torchaudio.load(audio_to_edit)
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < target_rms:
audio = audio * target_rms / rms
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
audio = resampler(audio)
offset = 0
audio_ = torch.zeros(1, 0)
edit_mask = torch.zeros(1, 0, dtype=torch.bool)
for part in parts_to_edit:
start, end = part
part_dur = end - start if fix_duration is None else fix_duration.pop(0)
part_dur = part_dur * target_sample_rate
start = start * target_sample_rate
audio_ = torch.cat((audio_, audio[:, round(offset) : round(start)], torch.zeros(1, round(part_dur))), dim=-1)
edit_mask = torch.cat(
(
edit_mask,
torch.ones(1, round((start - offset) / hop_length), dtype=torch.bool),
torch.zeros(1, round(part_dur / hop_length), dtype=torch.bool),
),
dim=-1,
)
offset = end * target_sample_rate
# audio = torch.cat((audio_, audio[:, round(offset):]), dim = -1)
edit_mask = F.pad(edit_mask, (0, audio.shape[-1] // hop_length - edit_mask.shape[-1] + 1), value=True)
audio = audio.to(device)
edit_mask = edit_mask.to(device)
# Text
text_list = [target_text]
if tokenizer == "pinyin":
final_text_list = convert_char_to_pinyin(text_list)
else:
final_text_list = [text_list]
print(f"text : {text_list}")
print(f"pinyin: {final_text_list}")
# Duration
ref_audio_len = 0
duration = audio.shape[-1] // hop_length
# Inference
with torch.inference_mode():
generated, trajectory = model.sample(
cond=audio,
text=final_text_list,
duration=duration,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
seed=seed,
edit_mask=edit_mask,
)
print(f"Generated mel: {generated.shape}")
# Final result
generated = generated.to(torch.float32)
generated = generated[:, ref_audio_len:, :]
gen_mel_spec = generated.permute(0, 2, 1)
if mel_spec_type == "vocos":
generated_wave = vocoder.decode(gen_mel_spec).cpu()
elif mel_spec_type == "bigvgan":
generated_wave = vocoder(gen_mel_spec).squeeze(0).cpu()
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
save_spectrogram(gen_mel_spec[0].cpu().numpy(), f"{output_dir}/speech_edit_out.png")
torchaudio.save(f"{output_dir}/speech_edit_out.wav", generated_wave, target_sample_rate)
print(f"Generated wav: {generated_wave.shape}")
|