Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import logging | |
| import random | |
| from typing import Dict, Optional | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| from omegaconf import DictConfig | |
| from cosyvoice.utils.mask import make_pad_mask | |
| import time | |
| class MaskedDiffWithXvec(torch.nn.Module): | |
| def __init__( | |
| self, | |
| input_size: int = 512, | |
| output_size: int = 80, | |
| spk_embed_dim: int = 192, | |
| output_type: str = "mel", | |
| vocab_size: int = 4096, | |
| input_frame_rate: int = 50, | |
| only_mask_loss: bool = True, | |
| encoder: torch.nn.Module = None, | |
| length_regulator: torch.nn.Module = None, | |
| decoder: torch.nn.Module = None, | |
| decoder_conf: Dict = { | |
| "in_channels": 240, | |
| "out_channel": 80, | |
| "spk_emb_dim": 80, | |
| "n_spks": 1, | |
| "cfm_params": DictConfig( | |
| { | |
| "sigma_min": 1e-06, | |
| "solver": "euler", | |
| "t_scheduler": "cosine", | |
| "training_cfg_rate": 0.2, | |
| "inference_cfg_rate": 0.7, | |
| "reg_loss_type": "l1", | |
| } | |
| ), | |
| "decoder_params": { | |
| "channels": [256, 256], | |
| "dropout": 0.0, | |
| "attention_head_dim": 64, | |
| "n_blocks": 4, | |
| "num_mid_blocks": 12, | |
| "num_heads": 8, | |
| "act_fn": "gelu", | |
| }, | |
| }, | |
| mel_feat_conf: Dict = { | |
| "n_fft": 1024, | |
| "num_mels": 80, | |
| "sampling_rate": 22050, | |
| "hop_size": 256, | |
| "win_size": 1024, | |
| "fmin": 0, | |
| "fmax": 8000, | |
| }, | |
| ): | |
| super().__init__() | |
| self.input_size = input_size | |
| self.output_size = output_size | |
| self.decoder_conf = decoder_conf | |
| self.mel_feat_conf = mel_feat_conf | |
| self.vocab_size = vocab_size | |
| self.output_type = output_type | |
| self.input_frame_rate = input_frame_rate | |
| logging.info(f"input frame rate={self.input_frame_rate}") | |
| self.input_embedding = nn.Embedding(vocab_size, input_size) | |
| self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size) | |
| self.encoder = encoder | |
| self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size) | |
| self.decoder = decoder | |
| self.length_regulator = length_regulator | |
| self.only_mask_loss = only_mask_loss | |
| def forward( | |
| self, | |
| batch: dict, | |
| device: torch.device, | |
| ) -> Dict[str, Optional[torch.Tensor]]: | |
| token = batch["speech_token"].to(device) | |
| token_len = batch["speech_token_len"].to(device) | |
| feat = batch["speech_feat"].to(device) | |
| feat_len = batch["speech_feat_len"].to(device) | |
| embedding = batch["embedding"].to(device) | |
| # xvec projection | |
| embedding = F.normalize(embedding, dim=1) | |
| embedding = self.spk_embed_affine_layer(embedding) | |
| # concat text and prompt_text | |
| mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device) | |
| token = self.input_embedding(torch.clamp(token, min=0)) * mask | |
| # text encode | |
| h, h_lengths = self.encoder(token, token_len) | |
| h = self.encoder_proj(h) | |
| h, h_lengths = self.length_regulator(h, feat_len) | |
| # get conditions | |
| conds = torch.zeros(feat.shape, device=token.device) | |
| for i, j in enumerate(feat_len): | |
| if random.random() < 0.5: | |
| continue | |
| index = random.randint(0, int(0.3 * j)) | |
| conds[i, :index] = feat[i, :index] | |
| conds = conds.transpose(1, 2) | |
| mask = (~make_pad_mask(feat_len)).to(h) | |
| feat = F.interpolate( | |
| feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest" | |
| ).squeeze(dim=1) | |
| loss, _ = self.decoder.compute_loss( | |
| feat.transpose(1, 2).contiguous(), | |
| mask.unsqueeze(1), | |
| h.transpose(1, 2).contiguous(), | |
| embedding, | |
| cond=conds, | |
| ) | |
| return {"loss": loss} | |
| def inference( | |
| self, | |
| token, | |
| token_len, | |
| prompt_token, | |
| prompt_token_len, | |
| prompt_feat, | |
| prompt_feat_len, | |
| embedding, | |
| ): | |
| assert token.shape[0] == 1 | |
| # xvec projection | |
| embedding = F.normalize(embedding, dim=1) | |
| embedding = self.spk_embed_affine_layer(embedding) | |
| # concat text and prompt_text | |
| token_len1, token_len2 = prompt_token.shape[1], token.shape[1] | |
| # text encode | |
| token, token_len = ( | |
| torch.concat([prompt_token, token], dim=1), | |
| prompt_token_len + token_len, | |
| ) | |
| token = self.input_embedding(torch.clamp(token, min=0)) | |
| h, _ = self.encoder.inference(token, token_len) | |
| h = self.encoder_proj(h) | |
| mel_len1, mel_len2 = prompt_feat.shape[1], int( | |
| token_len2 | |
| / self.input_frame_rate | |
| * self.mel_feat_conf["sampling_rate"] | |
| / self.mel_feat_conf["hop_size"] | |
| ) | |
| h, _ = self.length_regulator.inference( | |
| h[:, :token_len1], | |
| h[:, token_len1:], | |
| mel_len1, | |
| mel_len2, | |
| ) | |
| # get conditions | |
| conds = torch.zeros( | |
| [1, mel_len1 + mel_len2, self.output_size], device=token.device | |
| ) | |
| conds[:, :mel_len1] = prompt_feat | |
| conds = conds.transpose(1, 2) | |
| # mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h) | |
| mask = torch.ones( | |
| [1, mel_len1 + mel_len2], device=h.device, dtype=torch.bfloat16 | |
| ) | |
| feat = self.decoder( | |
| mu=h.transpose(1, 2).contiguous(), | |
| mask=mask.unsqueeze(1), | |
| spks=embedding, | |
| cond=conds, | |
| n_timesteps=10, | |
| ) | |
| feat = feat[:, :, mel_len1:] | |
| assert feat.shape[2] == mel_len2 | |
| return feat | |
