Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python3 | |
| # -*- encoding: utf-8 -*- | |
| # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
| # MIT License (https://opensource.org/licenses/MIT) | |
| import os | |
| import re | |
| import time | |
| import copy | |
| import torch | |
| import codecs | |
| import logging | |
| import tempfile | |
| import requests | |
| import numpy as np | |
| from typing import Dict, Tuple | |
| from contextlib import contextmanager | |
| from distutils.version import LooseVersion | |
| from funasr_detach.register import tables | |
| from funasr_detach.utils import postprocess_utils | |
| from funasr_detach.metrics.compute_acc import th_accuracy | |
| from funasr_detach.models.paraformer.model import Paraformer | |
| from funasr_detach.utils.datadir_writer import DatadirWriter | |
| from funasr_detach.models.paraformer.search import Hypothesis | |
| from funasr_detach.models.paraformer.cif_predictor import mae_loss | |
| from funasr_detach.train_utils.device_funcs import force_gatherable | |
| from funasr_detach.models.bicif_paraformer.model import BiCifParaformer | |
| from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss | |
| from funasr_detach.utils.timestamp_tools import ts_prediction_lfr6_standard | |
| from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos | |
| from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list | |
| from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank | |
| if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): | |
| from torch.cuda.amp import autocast | |
| else: | |
| # Nothing to do if torch<1.6.0 | |
| def autocast(enabled=True): | |
| yield | |
| class SeacoParaformer(BiCifParaformer, Paraformer): | |
| """ | |
| Author: Speech Lab of DAMO Academy, Alibaba Group | |
| SeACo-Paraformer: A Non-Autoregressive ASR System with Flexible and Effective Hotword Customization Ability | |
| https://arxiv.org/abs/2308.03266 | |
| """ | |
| def __init__( | |
| self, | |
| *args, | |
| **kwargs, | |
| ): | |
| super().__init__(*args, **kwargs) | |
| self.inner_dim = kwargs.get("inner_dim", 256) | |
| self.bias_encoder_type = kwargs.get("bias_encoder_type", "lstm") | |
| bias_encoder_dropout_rate = kwargs.get("bias_encoder_dropout_rate", 0.0) | |
| bias_encoder_bid = kwargs.get("bias_encoder_bid", False) | |
| seaco_lsm_weight = kwargs.get("seaco_lsm_weight", 0.0) | |
| seaco_length_normalized_loss = kwargs.get("seaco_length_normalized_loss", True) | |
| # bias encoder | |
| if self.bias_encoder_type == "lstm": | |
| self.bias_encoder = torch.nn.LSTM( | |
| self.inner_dim, | |
| self.inner_dim, | |
| 2, | |
| batch_first=True, | |
| dropout=bias_encoder_dropout_rate, | |
| bidirectional=bias_encoder_bid, | |
| ) | |
| if bias_encoder_bid: | |
| self.lstm_proj = torch.nn.Linear(self.inner_dim * 2, self.inner_dim) | |
| else: | |
| self.lstm_proj = None | |
| self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim) | |
| elif self.bias_encoder_type == "mean": | |
| self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim) | |
| else: | |
| logging.error( | |
| "Unsupport bias encoder type: {}".format(self.bias_encoder_type) | |
| ) | |
| # seaco decoder | |
| seaco_decoder = kwargs.get("seaco_decoder", None) | |
| if seaco_decoder is not None: | |
| seaco_decoder_conf = kwargs.get("seaco_decoder_conf") | |
| seaco_decoder_class = tables.decoder_classes.get(seaco_decoder) | |
| self.seaco_decoder = seaco_decoder_class( | |
| vocab_size=self.vocab_size, | |
| encoder_output_size=self.inner_dim, | |
| **seaco_decoder_conf, | |
| ) | |
| self.hotword_output_layer = torch.nn.Linear(self.inner_dim, self.vocab_size) | |
| self.criterion_seaco = LabelSmoothingLoss( | |
| size=self.vocab_size, | |
| padding_idx=self.ignore_id, | |
| smoothing=seaco_lsm_weight, | |
| normalize_length=seaco_length_normalized_loss, | |
| ) | |
| self.train_decoder = kwargs.get("train_decoder", False) | |
| self.NO_BIAS = kwargs.get("NO_BIAS", 8377) | |
| def forward( | |
| self, | |
| speech: torch.Tensor, | |
| speech_lengths: torch.Tensor, | |
| text: torch.Tensor, | |
| text_lengths: torch.Tensor, | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: | |
| """Frontend + Encoder + Decoder + Calc loss | |
| Args: | |
| speech: (Batch, Length, ...) | |
| speech_lengths: (Batch, ) | |
| text: (Batch, Length) | |
| text_lengths: (Batch,) | |
| """ | |
| assert text_lengths.dim() == 1, text_lengths.shape | |
| # Check that batch_size is unified | |
| assert ( | |
| speech.shape[0] | |
| == speech_lengths.shape[0] | |
| == text.shape[0] | |
| == text_lengths.shape[0] | |
| ), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape) | |
| hotword_pad = kwargs.get("hotword_pad") | |
| hotword_lengths = kwargs.get("hotword_lengths") | |
| dha_pad = kwargs.get("dha_pad") | |
| batch_size = speech.shape[0] | |
| self.step_cur += 1 | |
| # for data-parallel | |
| text = text[:, : text_lengths.max()] | |
| speech = speech[:, : speech_lengths.max()] | |
| # 1. Encoder | |
| encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
| if self.predictor_bias == 1: | |
| _, ys_pad = add_sos_eos(text, self.sos, self.eos, self.ignore_id) | |
| ys_lengths = text_lengths + self.predictor_bias | |
| stats = dict() | |
| loss_seaco = self._calc_seaco_loss( | |
| encoder_out, | |
| encoder_out_lens, | |
| ys_pad, | |
| ys_lengths, | |
| hotword_pad, | |
| hotword_lengths, | |
| dha_pad, | |
| ) | |
| if self.train_decoder: | |
| loss_att, acc_att = self._calc_att_loss( | |
| encoder_out, encoder_out_lens, text, text_lengths | |
| ) | |
| loss = loss_seaco + loss_att | |
| stats["loss_att"] = torch.clone(loss_att.detach()) | |
| stats["acc_att"] = acc_att | |
| else: | |
| loss = loss_seaco | |
| stats["loss_seaco"] = torch.clone(loss_seaco.detach()) | |
| stats["loss"] = torch.clone(loss.detach()) | |
| # force_gatherable: to-device and to-tensor if scalar for DataParallel | |
| if self.length_normalized_loss: | |
| batch_size = (text_lengths + self.predictor_bias).sum().type_as(batch_size) | |
| loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) | |
| return loss, stats, weight | |
| def _merge(self, cif_attended, dec_attended): | |
| return cif_attended + dec_attended | |
| def _calc_seaco_loss( | |
| self, | |
| encoder_out: torch.Tensor, | |
| encoder_out_lens: torch.Tensor, | |
| ys_pad: torch.Tensor, | |
| ys_lengths: torch.Tensor, | |
| hotword_pad: torch.Tensor, | |
| hotword_lengths: torch.Tensor, | |
| dha_pad: torch.Tensor, | |
| ): | |
| # predictor forward | |
| encoder_out_mask = ( | |
| ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] | |
| ).to(encoder_out.device) | |
| pre_acoustic_embeds, _, _, _ = self.predictor( | |
| encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id | |
| ) | |
| # decoder forward | |
| decoder_out, _ = self.decoder( | |
| encoder_out, | |
| encoder_out_lens, | |
| pre_acoustic_embeds, | |
| ys_lengths, | |
| return_hidden=True, | |
| ) | |
| selected = self._hotword_representation(hotword_pad, hotword_lengths) | |
| contextual_info = ( | |
| selected.squeeze(0) | |
| .repeat(encoder_out.shape[0], 1, 1) | |
| .to(encoder_out.device) | |
| ) | |
| num_hot_word = contextual_info.shape[1] | |
| _contextual_length = ( | |
| torch.Tensor([num_hot_word]) | |
| .int() | |
| .repeat(encoder_out.shape[0]) | |
| .to(encoder_out.device) | |
| ) | |
| # dha core | |
| cif_attended, _ = self.seaco_decoder( | |
| contextual_info, _contextual_length, pre_acoustic_embeds, ys_lengths | |
| ) | |
| dec_attended, _ = self.seaco_decoder( | |
| contextual_info, _contextual_length, decoder_out, ys_lengths | |
| ) | |
| merged = self._merge(cif_attended, dec_attended) | |
| dha_output = self.hotword_output_layer( | |
| merged[:, :-1] | |
| ) # remove the last token in loss calculation | |
| loss_att = self.criterion_seaco(dha_output, dha_pad) | |
| return loss_att | |
| def _seaco_decode_with_ASF( | |
| self, | |
| encoder_out, | |
| encoder_out_lens, | |
| sematic_embeds, | |
| ys_pad_lens, | |
| hw_list, | |
| nfilter=50, | |
| seaco_weight=1.0, | |
| ): | |
| # decoder forward | |
| decoder_out, decoder_hidden, _ = self.decoder( | |
| encoder_out, | |
| encoder_out_lens, | |
| sematic_embeds, | |
| ys_pad_lens, | |
| return_hidden=True, | |
| return_both=True, | |
| ) | |
| decoder_pred = torch.log_softmax(decoder_out, dim=-1) | |
| if hw_list is not None: | |
| hw_lengths = [len(i) for i in hw_list] | |
| hw_list_ = [torch.Tensor(i).long() for i in hw_list] | |
| hw_list_pad = pad_list(hw_list_, 0).to(encoder_out.device) | |
| selected = self._hotword_representation( | |
| hw_list_pad, torch.Tensor(hw_lengths).int().to(encoder_out.device) | |
| ) | |
| contextual_info = ( | |
| selected.squeeze(0) | |
| .repeat(encoder_out.shape[0], 1, 1) | |
| .to(encoder_out.device) | |
| ) | |
| num_hot_word = contextual_info.shape[1] | |
| _contextual_length = ( | |
| torch.Tensor([num_hot_word]) | |
| .int() | |
| .repeat(encoder_out.shape[0]) | |
| .to(encoder_out.device) | |
| ) | |
| # ASF Core | |
| if nfilter > 0 and nfilter < num_hot_word: | |
| for dec in self.seaco_decoder.decoders: | |
| dec.reserve_attn = True | |
| # cif_attended, _ = self.decoder2(contextual_info, _contextual_length, sematic_embeds, ys_pad_lens) | |
| dec_attended, _ = self.seaco_decoder( | |
| contextual_info, _contextual_length, decoder_hidden, ys_pad_lens | |
| ) | |
| # cif_filter = torch.topk(self.decoder2.decoders[-1].attn_mat[0][0].sum(0).sum(0)[:-1], min(nfilter, num_hot_word-1))[1].tolist() | |
| hotword_scores = ( | |
| self.seaco_decoder.decoders[-1].attn_mat[0][0].sum(0).sum(0)[:-1] | |
| ) | |
| # hotword_scores /= torch.sqrt(torch.tensor(hw_lengths)[:-1].float()).to(hotword_scores.device) | |
| dec_filter = torch.topk(hotword_scores, min(nfilter, num_hot_word - 1))[ | |
| 1 | |
| ].tolist() | |
| add_filter = dec_filter | |
| add_filter.append(len(hw_list_pad) - 1) | |
| # filter hotword embedding | |
| selected = selected[add_filter] | |
| # again | |
| contextual_info = ( | |
| selected.squeeze(0) | |
| .repeat(encoder_out.shape[0], 1, 1) | |
| .to(encoder_out.device) | |
| ) | |
| num_hot_word = contextual_info.shape[1] | |
| _contextual_length = ( | |
| torch.Tensor([num_hot_word]) | |
| .int() | |
| .repeat(encoder_out.shape[0]) | |
| .to(encoder_out.device) | |
| ) | |
| for dec in self.seaco_decoder.decoders: | |
| dec.attn_mat = [] | |
| dec.reserve_attn = False | |
| # SeACo Core | |
| cif_attended, _ = self.seaco_decoder( | |
| contextual_info, _contextual_length, sematic_embeds, ys_pad_lens | |
| ) | |
| dec_attended, _ = self.seaco_decoder( | |
| contextual_info, _contextual_length, decoder_hidden, ys_pad_lens | |
| ) | |
| merged = self._merge(cif_attended, dec_attended) | |
| dha_output = self.hotword_output_layer( | |
| merged | |
| ) # remove the last token in loss calculation | |
| dha_pred = torch.log_softmax(dha_output, dim=-1) | |
| def _merge_res(dec_output, dha_output): | |
| lmbd = torch.Tensor([seaco_weight] * dha_output.shape[0]) | |
| dha_ids = dha_output.max(-1)[-1] # [0] | |
| dha_mask = (dha_ids == 8377).int().unsqueeze(-1) | |
| a = (1 - lmbd) / lmbd | |
| b = 1 / lmbd | |
| a, b = a.to(dec_output.device), b.to(dec_output.device) | |
| dha_mask = (dha_mask + a.reshape(-1, 1, 1)) / b.reshape(-1, 1, 1) | |
| # logits = dec_output * dha_mask + dha_output[:,:,:-1] * (1-dha_mask) | |
| logits = dec_output * dha_mask + dha_output[:, :, :] * (1 - dha_mask) | |
| return logits | |
| merged_pred = _merge_res(decoder_pred, dha_pred) | |
| # import pdb; pdb.set_trace() | |
| return merged_pred | |
| else: | |
| return decoder_pred | |
| def _hotword_representation(self, hotword_pad, hotword_lengths): | |
| if self.bias_encoder_type != "lstm": | |
| logging.error("Unsupported bias encoder type") | |
| hw_embed = self.decoder.embed(hotword_pad) | |
| hw_embed, (_, _) = self.bias_encoder(hw_embed) | |
| if self.lstm_proj is not None: | |
| hw_embed = self.lstm_proj(hw_embed) | |
| _ind = np.arange(0, hw_embed.shape[0]).tolist() | |
| selected = hw_embed[ | |
| _ind, [i - 1 for i in hotword_lengths.detach().cpu().tolist()] | |
| ] | |
| return selected | |
| """ | |
| def calc_predictor(self, encoder_out, encoder_out_lens): | |
| encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( | |
| encoder_out.device) | |
| pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index, pre_token_length2 = self.predictor(encoder_out, | |
| None, | |
| encoder_out_mask, | |
| ignore_id=self.ignore_id) | |
| return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index | |
| def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num): | |
| encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( | |
| encoder_out.device) | |
| ds_alphas, ds_cif_peak, us_alphas, us_peaks = self.predictor.get_upsample_timestamp(encoder_out, | |
| encoder_out_mask, | |
| token_num) | |
| return ds_alphas, ds_cif_peak, us_alphas, us_peaks | |
| """ | |
| def inference( | |
| self, | |
| data_in, | |
| data_lengths=None, | |
| key: list = None, | |
| tokenizer=None, | |
| frontend=None, | |
| **kwargs, | |
| ): | |
| # init beamsearch | |
| is_use_ctc = ( | |
| kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None | |
| ) | |
| is_use_lm = ( | |
| kwargs.get("lm_weight", 0.0) > 0.00001 | |
| and kwargs.get("lm_file", None) is not None | |
| ) | |
| if self.beam_search is None and (is_use_lm or is_use_ctc): | |
| logging.info("enable beam_search") | |
| self.init_beam_search(**kwargs) | |
| self.nbest = kwargs.get("nbest", 1) | |
| meta_data = {} | |
| # extract fbank feats | |
| time1 = time.perf_counter() | |
| audio_sample_list = load_audio_text_image_video( | |
| data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000) | |
| ) | |
| time2 = time.perf_counter() | |
| meta_data["load_data"] = f"{time2 - time1:0.3f}" | |
| speech, speech_lengths = extract_fbank( | |
| audio_sample_list, | |
| data_type=kwargs.get("data_type", "sound"), | |
| frontend=frontend, | |
| ) | |
| time3 = time.perf_counter() | |
| meta_data["extract_feat"] = f"{time3 - time2:0.3f}" | |
| meta_data["batch_data_time"] = ( | |
| speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000 | |
| ) | |
| speech = speech.to(device=kwargs["device"]) | |
| speech_lengths = speech_lengths.to(device=kwargs["device"]) | |
| # hotword | |
| self.hotword_list = self.generate_hotwords_list( | |
| kwargs.get("hotword", None), tokenizer=tokenizer, frontend=frontend | |
| ) | |
| # Encoder | |
| encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
| if isinstance(encoder_out, tuple): | |
| encoder_out = encoder_out[0] | |
| # predictor | |
| predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens) | |
| pre_acoustic_embeds, pre_token_length, _, _ = ( | |
| predictor_outs[0], | |
| predictor_outs[1], | |
| predictor_outs[2], | |
| predictor_outs[3], | |
| ) | |
| pre_token_length = pre_token_length.round().long() | |
| if torch.max(pre_token_length) < 1: | |
| return [] | |
| decoder_out = self._seaco_decode_with_ASF( | |
| encoder_out, | |
| encoder_out_lens, | |
| pre_acoustic_embeds, | |
| pre_token_length, | |
| hw_list=self.hotword_list, | |
| ) | |
| # decoder_out, _ = decoder_outs[0], decoder_outs[1] | |
| _, _, us_alphas, us_peaks = self.calc_predictor_timestamp( | |
| encoder_out, encoder_out_lens, pre_token_length | |
| ) | |
| results = [] | |
| b, n, d = decoder_out.size() | |
| for i in range(b): | |
| x = encoder_out[i, : encoder_out_lens[i], :] | |
| am_scores = decoder_out[i, : pre_token_length[i], :] | |
| if self.beam_search is not None: | |
| nbest_hyps = self.beam_search( | |
| x=x, | |
| am_scores=am_scores, | |
| maxlenratio=kwargs.get("maxlenratio", 0.0), | |
| minlenratio=kwargs.get("minlenratio", 0.0), | |
| ) | |
| nbest_hyps = nbest_hyps[: self.nbest] | |
| else: | |
| yseq = am_scores.argmax(dim=-1) | |
| score = am_scores.max(dim=-1)[0] | |
| score = torch.sum(score, dim=-1) | |
| # pad with mask tokens to ensure compatibility with sos/eos tokens | |
| yseq = torch.tensor( | |
| [self.sos] + yseq.tolist() + [self.eos], device=yseq.device | |
| ) | |
| nbest_hyps = [Hypothesis(yseq=yseq, score=score)] | |
| for nbest_idx, hyp in enumerate(nbest_hyps): | |
| ibest_writer = None | |
| if kwargs.get("output_dir") is not None: | |
| if not hasattr(self, "writer"): | |
| self.writer = DatadirWriter(kwargs.get("output_dir")) | |
| ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"] | |
| # remove sos/eos and get results | |
| last_pos = -1 | |
| if isinstance(hyp.yseq, list): | |
| token_int = hyp.yseq[1:last_pos] | |
| else: | |
| token_int = hyp.yseq[1:last_pos].tolist() | |
| # remove blank symbol id, which is assumed to be 0 | |
| token_int = list( | |
| filter( | |
| lambda x: x != self.eos | |
| and x != self.sos | |
| and x != self.blank_id, | |
| token_int, | |
| ) | |
| ) | |
| if tokenizer is not None: | |
| # Change integer-ids to tokens | |
| token = tokenizer.ids2tokens(token_int) | |
| text = tokenizer.tokens2text(token) | |
| _, timestamp = ts_prediction_lfr6_standard( | |
| us_alphas[i][: encoder_out_lens[i] * 3], | |
| us_peaks[i][: encoder_out_lens[i] * 3], | |
| copy.copy(token), | |
| vad_offset=kwargs.get("begin_time", 0), | |
| ) | |
| text_postprocessed, time_stamp_postprocessed, word_lists = ( | |
| postprocess_utils.sentence_postprocess(token, timestamp) | |
| ) | |
| result_i = { | |
| "key": key[i], | |
| "text": text_postprocessed, | |
| "timestamp": time_stamp_postprocessed, | |
| } | |
| if ibest_writer is not None: | |
| ibest_writer["token"][key[i]] = " ".join(token) | |
| ibest_writer["timestamp"][key[i]] = time_stamp_postprocessed | |
| ibest_writer["text"][key[i]] = text_postprocessed | |
| else: | |
| result_i = {"key": key[i], "token_int": token_int} | |
| results.append(result_i) | |
| return results, meta_data | |
| def generate_hotwords_list( | |
| self, hotword_list_or_file, tokenizer=None, frontend=None | |
| ): | |
| def load_seg_dict(seg_dict_file): | |
| seg_dict = {} | |
| assert isinstance(seg_dict_file, str) | |
| with open(seg_dict_file, "r", encoding="utf8") as f: | |
| lines = f.readlines() | |
| for line in lines: | |
| s = line.strip().split() | |
| key = s[0] | |
| value = s[1:] | |
| seg_dict[key] = " ".join(value) | |
| return seg_dict | |
| def seg_tokenize(txt, seg_dict): | |
| pattern = re.compile(r"^[\u4E00-\u9FA50-9]+$") | |
| out_txt = "" | |
| for word in txt: | |
| word = word.lower() | |
| if word in seg_dict: | |
| out_txt += seg_dict[word] + " " | |
| else: | |
| if pattern.match(word): | |
| for char in word: | |
| if char in seg_dict: | |
| out_txt += seg_dict[char] + " " | |
| else: | |
| out_txt += "<unk>" + " " | |
| else: | |
| out_txt += "<unk>" + " " | |
| return out_txt.strip().split() | |
| seg_dict = None | |
| if frontend.cmvn_file is not None: | |
| model_dir = os.path.dirname(frontend.cmvn_file) | |
| seg_dict_file = os.path.join(model_dir, "seg_dict") | |
| if os.path.exists(seg_dict_file): | |
| seg_dict = load_seg_dict(seg_dict_file) | |
| else: | |
| seg_dict = None | |
| # for None | |
| if hotword_list_or_file is None: | |
| hotword_list = None | |
| # for local txt inputs | |
| elif os.path.exists(hotword_list_or_file) and hotword_list_or_file.endswith( | |
| ".txt" | |
| ): | |
| logging.info("Attempting to parse hotwords from local txt...") | |
| hotword_list = [] | |
| hotword_str_list = [] | |
| with codecs.open(hotword_list_or_file, "r") as fin: | |
| for line in fin.readlines(): | |
| hw = line.strip() | |
| hw_list = hw.split() | |
| if seg_dict is not None: | |
| hw_list = seg_tokenize(hw_list, seg_dict) | |
| hotword_str_list.append(hw) | |
| hotword_list.append(tokenizer.tokens2ids(hw_list)) | |
| hotword_list.append([self.sos]) | |
| hotword_str_list.append("<s>") | |
| logging.info( | |
| "Initialized hotword list from file: {}, hotword list: {}.".format( | |
| hotword_list_or_file, hotword_str_list | |
| ) | |
| ) | |
| # for url, download and generate txt | |
| elif hotword_list_or_file.startswith("http"): | |
| logging.info("Attempting to parse hotwords from url...") | |
| work_dir = tempfile.TemporaryDirectory().name | |
| if not os.path.exists(work_dir): | |
| os.makedirs(work_dir) | |
| text_file_path = os.path.join( | |
| work_dir, os.path.basename(hotword_list_or_file) | |
| ) | |
| local_file = requests.get(hotword_list_or_file) | |
| open(text_file_path, "wb").write(local_file.content) | |
| hotword_list_or_file = text_file_path | |
| hotword_list = [] | |
| hotword_str_list = [] | |
| with codecs.open(hotword_list_or_file, "r") as fin: | |
| for line in fin.readlines(): | |
| hw = line.strip() | |
| hw_list = hw.split() | |
| if seg_dict is not None: | |
| hw_list = seg_tokenize(hw_list, seg_dict) | |
| hotword_str_list.append(hw) | |
| hotword_list.append(tokenizer.tokens2ids(hw_list)) | |
| hotword_list.append([self.sos]) | |
| hotword_str_list.append("<s>") | |
| logging.info( | |
| "Initialized hotword list from file: {}, hotword list: {}.".format( | |
| hotword_list_or_file, hotword_str_list | |
| ) | |
| ) | |
| # for text str input | |
| elif not hotword_list_or_file.endswith(".txt"): | |
| logging.info("Attempting to parse hotwords as str...") | |
| hotword_list = [] | |
| hotword_str_list = [] | |
| for hw in hotword_list_or_file.strip().split(): | |
| hotword_str_list.append(hw) | |
| hw_list = hw.strip().split() | |
| if seg_dict is not None: | |
| hw_list = seg_tokenize(hw_list, seg_dict) | |
| hotword_list.append(tokenizer.tokens2ids(hw_list)) | |
| hotword_list.append([self.sos]) | |
| hotword_str_list.append("<s>") | |
| logging.info("Hotword list: {}.".format(hotword_str_list)) | |
| else: | |
| hotword_list = None | |
| return hotword_list | |