Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Optional | |
| from typing import Tuple | |
| import logging | |
| import torch | |
| from torch import nn | |
| from funasr_detach.models.encoder.encoder_layer_mfcca import EncoderLayer | |
| from funasr_detach.models.transformer.utils.nets_utils import get_activation | |
| from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask | |
| from funasr_detach.models.transformer.attention import ( | |
| MultiHeadedAttention, # noqa: H301 | |
| RelPositionMultiHeadedAttention, # noqa: H301 | |
| LegacyRelPositionMultiHeadedAttention, # noqa: H301 | |
| ) | |
| from funasr_detach.models.transformer.embedding import ( | |
| PositionalEncoding, # noqa: H301 | |
| ScaledPositionalEncoding, # noqa: H301 | |
| RelPositionalEncoding, # noqa: H301 | |
| LegacyRelPositionalEncoding, # noqa: H301 | |
| ) | |
| from funasr_detach.models.transformer.layer_norm import LayerNorm | |
| from funasr_detach.models.transformer.utils.multi_layer_conv import Conv1dLinear | |
| from funasr_detach.models.transformer.utils.multi_layer_conv import MultiLayeredConv1d | |
| from funasr_detach.models.transformer.positionwise_feed_forward import ( | |
| PositionwiseFeedForward, # noqa: H301 | |
| ) | |
| from funasr_detach.models.transformer.utils.repeat import repeat | |
| from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling | |
| from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling2 | |
| from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling6 | |
| from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling8 | |
| from funasr_detach.models.transformer.utils.subsampling import TooShortUttError | |
| from funasr_detach.models.transformer.utils.subsampling import check_short_utt | |
| from funasr_detach.models.encoder.abs_encoder import AbsEncoder | |
| import pdb | |
| import math | |
| class ConvolutionModule(nn.Module): | |
| """ConvolutionModule in Conformer model. | |
| Args: | |
| channels (int): The number of channels of conv layers. | |
| kernel_size (int): Kernerl size of conv layers. | |
| """ | |
| def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True): | |
| """Construct an ConvolutionModule object.""" | |
| super(ConvolutionModule, self).__init__() | |
| # kernerl_size should be a odd number for 'SAME' padding | |
| assert (kernel_size - 1) % 2 == 0 | |
| self.pointwise_conv1 = nn.Conv1d( | |
| channels, | |
| 2 * channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| bias=bias, | |
| ) | |
| self.depthwise_conv = nn.Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| stride=1, | |
| padding=(kernel_size - 1) // 2, | |
| groups=channels, | |
| bias=bias, | |
| ) | |
| self.norm = nn.BatchNorm1d(channels) | |
| self.pointwise_conv2 = nn.Conv1d( | |
| channels, | |
| channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| bias=bias, | |
| ) | |
| self.activation = activation | |
| def forward(self, x): | |
| """Compute convolution module. | |
| Args: | |
| x (torch.Tensor): Input tensor (#batch, time, channels). | |
| Returns: | |
| torch.Tensor: Output tensor (#batch, time, channels). | |
| """ | |
| # exchange the temporal dimension and the feature dimension | |
| x = x.transpose(1, 2) | |
| # GLU mechanism | |
| x = self.pointwise_conv1(x) # (batch, 2*channel, dim) | |
| x = nn.functional.glu(x, dim=1) # (batch, channel, dim) | |
| # 1D Depthwise Conv | |
| x = self.depthwise_conv(x) | |
| x = self.activation(self.norm(x)) | |
| x = self.pointwise_conv2(x) | |
| return x.transpose(1, 2) | |
| class MFCCAEncoder(AbsEncoder): | |
| """Conformer encoder module. | |
| Args: | |
| input_size (int): Input dimension. | |
| output_size (int): Dimention of attention. | |
| attention_heads (int): The number of heads of multi head attention. | |
| linear_units (int): The number of units of position-wise feed forward. | |
| num_blocks (int): The number of decoder blocks. | |
| dropout_rate (float): Dropout rate. | |
| attention_dropout_rate (float): Dropout rate in attention. | |
| positional_dropout_rate (float): Dropout rate after adding positional encoding. | |
| input_layer (Union[str, torch.nn.Module]): Input layer type. | |
| normalize_before (bool): Whether to use layer_norm before the first block. | |
| concat_after (bool): Whether to concat attention layer's input and output. | |
| If True, additional linear will be applied. | |
| i.e. x -> x + linear(concat(x, att(x))) | |
| If False, no additional linear will be applied. i.e. x -> x + att(x) | |
| positionwise_layer_type (str): "linear", "conv1d", or "conv1d-linear". | |
| positionwise_conv_kernel_size (int): Kernel size of positionwise conv1d layer. | |
| rel_pos_type (str): Whether to use the latest relative positional encoding or | |
| the legacy one. The legacy relative positional encoding will be deprecated | |
| in the future. More Details can be found in | |
| https://github.com/espnet/espnet/pull/2816. | |
| encoder_pos_enc_layer_type (str): Encoder positional encoding layer type. | |
| encoder_attn_layer_type (str): Encoder attention layer type. | |
| activation_type (str): Encoder activation function type. | |
| macaron_style (bool): Whether to use macaron style for positionwise layer. | |
| use_cnn_module (bool): Whether to use convolution module. | |
| zero_triu (bool): Whether to zero the upper triangular part of attention matrix. | |
| cnn_module_kernel (int): Kernerl size of convolution module. | |
| padding_idx (int): Padding idx for input_layer=embed. | |
| """ | |
| def __init__( | |
| self, | |
| input_size: int, | |
| output_size: int = 256, | |
| attention_heads: int = 4, | |
| linear_units: int = 2048, | |
| num_blocks: int = 6, | |
| dropout_rate: float = 0.1, | |
| positional_dropout_rate: float = 0.1, | |
| attention_dropout_rate: float = 0.0, | |
| input_layer: str = "conv2d", | |
| normalize_before: bool = True, | |
| concat_after: bool = False, | |
| positionwise_layer_type: str = "linear", | |
| positionwise_conv_kernel_size: int = 3, | |
| macaron_style: bool = False, | |
| rel_pos_type: str = "legacy", | |
| pos_enc_layer_type: str = "rel_pos", | |
| selfattention_layer_type: str = "rel_selfattn", | |
| activation_type: str = "swish", | |
| use_cnn_module: bool = True, | |
| zero_triu: bool = False, | |
| cnn_module_kernel: int = 31, | |
| padding_idx: int = -1, | |
| ): | |
| super().__init__() | |
| self._output_size = output_size | |
| if rel_pos_type == "legacy": | |
| if pos_enc_layer_type == "rel_pos": | |
| pos_enc_layer_type = "legacy_rel_pos" | |
| if selfattention_layer_type == "rel_selfattn": | |
| selfattention_layer_type = "legacy_rel_selfattn" | |
| elif rel_pos_type == "latest": | |
| assert selfattention_layer_type != "legacy_rel_selfattn" | |
| assert pos_enc_layer_type != "legacy_rel_pos" | |
| else: | |
| raise ValueError("unknown rel_pos_type: " + rel_pos_type) | |
| activation = get_activation(activation_type) | |
| if pos_enc_layer_type == "abs_pos": | |
| pos_enc_class = PositionalEncoding | |
| elif pos_enc_layer_type == "scaled_abs_pos": | |
| pos_enc_class = ScaledPositionalEncoding | |
| elif pos_enc_layer_type == "rel_pos": | |
| assert selfattention_layer_type == "rel_selfattn" | |
| pos_enc_class = RelPositionalEncoding | |
| elif pos_enc_layer_type == "legacy_rel_pos": | |
| assert selfattention_layer_type == "legacy_rel_selfattn" | |
| pos_enc_class = LegacyRelPositionalEncoding | |
| logging.warning( | |
| "Using legacy_rel_pos and it will be deprecated in the future." | |
| ) | |
| else: | |
| raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type) | |
| if input_layer == "linear": | |
| self.embed = torch.nn.Sequential( | |
| torch.nn.Linear(input_size, output_size), | |
| torch.nn.LayerNorm(output_size), | |
| torch.nn.Dropout(dropout_rate), | |
| pos_enc_class(output_size, positional_dropout_rate), | |
| ) | |
| elif input_layer == "conv2d": | |
| self.embed = Conv2dSubsampling( | |
| input_size, | |
| output_size, | |
| dropout_rate, | |
| pos_enc_class(output_size, positional_dropout_rate), | |
| ) | |
| elif input_layer == "conv2d6": | |
| self.embed = Conv2dSubsampling6( | |
| input_size, | |
| output_size, | |
| dropout_rate, | |
| pos_enc_class(output_size, positional_dropout_rate), | |
| ) | |
| elif input_layer == "conv2d8": | |
| self.embed = Conv2dSubsampling8( | |
| input_size, | |
| output_size, | |
| dropout_rate, | |
| pos_enc_class(output_size, positional_dropout_rate), | |
| ) | |
| elif input_layer == "embed": | |
| self.embed = torch.nn.Sequential( | |
| torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx), | |
| pos_enc_class(output_size, positional_dropout_rate), | |
| ) | |
| elif isinstance(input_layer, torch.nn.Module): | |
| self.embed = torch.nn.Sequential( | |
| input_layer, | |
| pos_enc_class(output_size, positional_dropout_rate), | |
| ) | |
| elif input_layer is None: | |
| self.embed = torch.nn.Sequential( | |
| pos_enc_class(output_size, positional_dropout_rate) | |
| ) | |
| else: | |
| raise ValueError("unknown input_layer: " + input_layer) | |
| self.normalize_before = normalize_before | |
| if positionwise_layer_type == "linear": | |
| positionwise_layer = PositionwiseFeedForward | |
| positionwise_layer_args = ( | |
| output_size, | |
| linear_units, | |
| dropout_rate, | |
| activation, | |
| ) | |
| elif positionwise_layer_type == "conv1d": | |
| positionwise_layer = MultiLayeredConv1d | |
| positionwise_layer_args = ( | |
| output_size, | |
| linear_units, | |
| positionwise_conv_kernel_size, | |
| dropout_rate, | |
| ) | |
| elif positionwise_layer_type == "conv1d-linear": | |
| positionwise_layer = Conv1dLinear | |
| positionwise_layer_args = ( | |
| output_size, | |
| linear_units, | |
| positionwise_conv_kernel_size, | |
| dropout_rate, | |
| ) | |
| else: | |
| raise NotImplementedError("Support only linear or conv1d.") | |
| if selfattention_layer_type == "selfattn": | |
| encoder_selfattn_layer = MultiHeadedAttention | |
| encoder_selfattn_layer_args = ( | |
| attention_heads, | |
| output_size, | |
| attention_dropout_rate, | |
| ) | |
| elif selfattention_layer_type == "legacy_rel_selfattn": | |
| assert pos_enc_layer_type == "legacy_rel_pos" | |
| encoder_selfattn_layer = LegacyRelPositionMultiHeadedAttention | |
| encoder_selfattn_layer_args = ( | |
| attention_heads, | |
| output_size, | |
| attention_dropout_rate, | |
| ) | |
| logging.warning( | |
| "Using legacy_rel_selfattn and it will be deprecated in the future." | |
| ) | |
| elif selfattention_layer_type == "rel_selfattn": | |
| assert pos_enc_layer_type == "rel_pos" | |
| encoder_selfattn_layer = RelPositionMultiHeadedAttention | |
| encoder_selfattn_layer_args = ( | |
| attention_heads, | |
| output_size, | |
| attention_dropout_rate, | |
| zero_triu, | |
| ) | |
| else: | |
| raise ValueError("unknown encoder_attn_layer: " + selfattention_layer_type) | |
| convolution_layer = ConvolutionModule | |
| convolution_layer_args = (output_size, cnn_module_kernel, activation) | |
| encoder_selfattn_layer_raw = MultiHeadedAttention | |
| encoder_selfattn_layer_args_raw = ( | |
| attention_heads, | |
| output_size, | |
| attention_dropout_rate, | |
| ) | |
| self.encoders = repeat( | |
| num_blocks, | |
| lambda lnum: EncoderLayer( | |
| output_size, | |
| encoder_selfattn_layer_raw(*encoder_selfattn_layer_args_raw), | |
| encoder_selfattn_layer(*encoder_selfattn_layer_args), | |
| positionwise_layer(*positionwise_layer_args), | |
| positionwise_layer(*positionwise_layer_args) if macaron_style else None, | |
| convolution_layer(*convolution_layer_args) if use_cnn_module else None, | |
| dropout_rate, | |
| normalize_before, | |
| concat_after, | |
| ), | |
| ) | |
| if self.normalize_before: | |
| self.after_norm = LayerNorm(output_size) | |
| self.conv1 = torch.nn.Conv2d(8, 16, [5, 7], stride=[1, 1], padding=(2, 3)) | |
| self.conv2 = torch.nn.Conv2d(16, 32, [5, 7], stride=[1, 1], padding=(2, 3)) | |
| self.conv3 = torch.nn.Conv2d(32, 16, [5, 7], stride=[1, 1], padding=(2, 3)) | |
| self.conv4 = torch.nn.Conv2d(16, 1, [5, 7], stride=[1, 1], padding=(2, 3)) | |
| def output_size(self) -> int: | |
| return self._output_size | |
| def forward( | |
| self, | |
| xs_pad: torch.Tensor, | |
| ilens: torch.Tensor, | |
| channel_size: torch.Tensor, | |
| prev_states: torch.Tensor = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: | |
| """Calculate forward propagation. | |
| Args: | |
| xs_pad (torch.Tensor): Input tensor (#batch, L, input_size). | |
| ilens (torch.Tensor): Input length (#batch). | |
| prev_states (torch.Tensor): Not to be used now. | |
| Returns: | |
| torch.Tensor: Output tensor (#batch, L, output_size). | |
| torch.Tensor: Output length (#batch). | |
| torch.Tensor: Not to be used now. | |
| """ | |
| masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device) | |
| if ( | |
| isinstance(self.embed, Conv2dSubsampling) | |
| or isinstance(self.embed, Conv2dSubsampling6) | |
| or isinstance(self.embed, Conv2dSubsampling8) | |
| ): | |
| short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1)) | |
| if short_status: | |
| raise TooShortUttError( | |
| f"has {xs_pad.size(1)} frames and is too short for subsampling " | |
| + f"(it needs more than {limit_size} frames), return empty results", | |
| xs_pad.size(1), | |
| limit_size, | |
| ) | |
| xs_pad, masks = self.embed(xs_pad, masks) | |
| else: | |
| xs_pad = self.embed(xs_pad) | |
| xs_pad, masks, channel_size = self.encoders(xs_pad, masks, channel_size) | |
| if isinstance(xs_pad, tuple): | |
| xs_pad = xs_pad[0] | |
| t_leng = xs_pad.size(1) | |
| d_dim = xs_pad.size(2) | |
| xs_pad = xs_pad.reshape(-1, channel_size, t_leng, d_dim) | |
| # pdb.set_trace() | |
| if channel_size < 8: | |
| repeat_num = math.ceil(8 / channel_size) | |
| xs_pad = xs_pad.repeat(1, repeat_num, 1, 1)[:, 0:8, :, :] | |
| xs_pad = self.conv1(xs_pad) | |
| xs_pad = self.conv2(xs_pad) | |
| xs_pad = self.conv3(xs_pad) | |
| xs_pad = self.conv4(xs_pad) | |
| xs_pad = xs_pad.squeeze().reshape(-1, t_leng, d_dim) | |
| mask_tmp = masks.size(1) | |
| masks = masks.reshape(-1, channel_size, mask_tmp, t_leng)[:, 0, :, :] | |
| if self.normalize_before: | |
| xs_pad = self.after_norm(xs_pad) | |
| olens = masks.squeeze(1).sum(1) | |
| return xs_pad, olens, None | |
| def forward_hidden( | |
| self, | |
| xs_pad: torch.Tensor, | |
| ilens: torch.Tensor, | |
| prev_states: torch.Tensor = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: | |
| """Calculate forward propagation. | |
| Args: | |
| xs_pad (torch.Tensor): Input tensor (#batch, L, input_size). | |
| ilens (torch.Tensor): Input length (#batch). | |
| prev_states (torch.Tensor): Not to be used now. | |
| Returns: | |
| torch.Tensor: Output tensor (#batch, L, output_size). | |
| torch.Tensor: Output length (#batch). | |
| torch.Tensor: Not to be used now. | |
| """ | |
| masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device) | |
| if ( | |
| isinstance(self.embed, Conv2dSubsampling) | |
| or isinstance(self.embed, Conv2dSubsampling6) | |
| or isinstance(self.embed, Conv2dSubsampling8) | |
| ): | |
| short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1)) | |
| if short_status: | |
| raise TooShortUttError( | |
| f"has {xs_pad.size(1)} frames and is too short for subsampling " | |
| + f"(it needs more than {limit_size} frames), return empty results", | |
| xs_pad.size(1), | |
| limit_size, | |
| ) | |
| xs_pad, masks = self.embed(xs_pad, masks) | |
| else: | |
| xs_pad = self.embed(xs_pad) | |
| num_layer = len(self.encoders) | |
| for idx, encoder in enumerate(self.encoders): | |
| xs_pad, masks = encoder(xs_pad, masks) | |
| if idx == num_layer // 2 - 1: | |
| hidden_feature = xs_pad | |
| if isinstance(xs_pad, tuple): | |
| xs_pad = xs_pad[0] | |
| hidden_feature = hidden_feature[0] | |
| if self.normalize_before: | |
| xs_pad = self.after_norm(xs_pad) | |
| self.hidden_feature = self.after_norm(hidden_feature) | |
| olens = masks.squeeze(1).sum(1) | |
| return xs_pad, olens, None | |