Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| from contextlib import contextmanager | |
| from distutils.version import LooseVersion | |
| from typing import Dict | |
| from typing import List | |
| from typing import Optional | |
| from typing import Tuple | |
| from typing import Union | |
| import logging | |
| import torch | |
| from funasr_detach.metrics import ErrorCalculator | |
| from funasr_detach.metrics.compute_acc import th_accuracy | |
| from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos | |
| from funasr_detach.losses.label_smoothing_loss import ( | |
| LabelSmoothingLoss, # noqa: H301 | |
| ) | |
| from funasr_detach.models.ctc import CTC | |
| from funasr_detach.models.decoder.abs_decoder import AbsDecoder | |
| from funasr_detach.models.encoder.abs_encoder import AbsEncoder | |
| from funasr_detach.frontends.abs_frontend import AbsFrontend | |
| from funasr_detach.models.preencoder.abs_preencoder import AbsPreEncoder | |
| from funasr_detach.models.specaug.abs_specaug import AbsSpecAug | |
| from funasr_detach.layers.abs_normalize import AbsNormalize | |
| from funasr_detach.train_utils.device_funcs import force_gatherable | |
| from funasr_detach.models.base_model import FunASRModel | |
| if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): | |
| from torch.cuda.amp import autocast | |
| else: | |
| # Nothing to do if torch<1.6.0 | |
| def autocast(enabled=True): | |
| yield | |
| import pdb | |
| import random | |
| import math | |
| class MFCCA(FunASRModel): | |
| """ | |
| Author: Audio, Speech and Language Processing Group (ASLP@NPU), Northwestern Polytechnical University | |
| MFCCA:Multi-Frame Cross-Channel attention for multi-speaker ASR in Multi-party meeting scenario | |
| https://arxiv.org/abs/2210.05265 | |
| """ | |
| def __init__( | |
| self, | |
| vocab_size: int, | |
| token_list: Union[Tuple[str, ...], List[str]], | |
| frontend: Optional[AbsFrontend], | |
| specaug: Optional[AbsSpecAug], | |
| normalize: Optional[AbsNormalize], | |
| encoder: AbsEncoder, | |
| decoder: AbsDecoder, | |
| ctc: CTC, | |
| rnnt_decoder: None = None, | |
| ctc_weight: float = 0.5, | |
| ignore_id: int = -1, | |
| lsm_weight: float = 0.0, | |
| mask_ratio: float = 0.0, | |
| length_normalized_loss: bool = False, | |
| report_cer: bool = True, | |
| report_wer: bool = True, | |
| sym_space: str = "<space>", | |
| sym_blank: str = "<blank>", | |
| preencoder: Optional[AbsPreEncoder] = None, | |
| ): | |
| assert 0.0 <= ctc_weight <= 1.0, ctc_weight | |
| assert rnnt_decoder is None, "Not implemented" | |
| super().__init__() | |
| # note that eos is the same as sos (equivalent ID) | |
| self.sos = vocab_size - 1 | |
| self.eos = vocab_size - 1 | |
| self.vocab_size = vocab_size | |
| self.ignore_id = ignore_id | |
| self.ctc_weight = ctc_weight | |
| self.token_list = token_list.copy() | |
| self.mask_ratio = mask_ratio | |
| self.frontend = frontend | |
| self.specaug = specaug | |
| self.normalize = normalize | |
| self.preencoder = preencoder | |
| self.encoder = encoder | |
| # we set self.decoder = None in the CTC mode since | |
| # self.decoder parameters were never used and PyTorch complained | |
| # and threw an Exception in the multi-GPU experiment. | |
| # thanks Jeff Farris for pointing out the issue. | |
| if ctc_weight == 1.0: | |
| self.decoder = None | |
| else: | |
| self.decoder = decoder | |
| if ctc_weight == 0.0: | |
| self.ctc = None | |
| else: | |
| self.ctc = ctc | |
| self.rnnt_decoder = rnnt_decoder | |
| self.criterion_att = LabelSmoothingLoss( | |
| size=vocab_size, | |
| padding_idx=ignore_id, | |
| smoothing=lsm_weight, | |
| normalize_length=length_normalized_loss, | |
| ) | |
| if report_cer or report_wer: | |
| self.error_calculator = ErrorCalculator( | |
| token_list, sym_space, sym_blank, report_cer, report_wer | |
| ) | |
| else: | |
| self.error_calculator = None | |
| def forward( | |
| self, | |
| speech: torch.Tensor, | |
| speech_lengths: torch.Tensor, | |
| text: torch.Tensor, | |
| text_lengths: torch.Tensor, | |
| ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: | |
| """Frontend + Encoder + Decoder + Calc loss | |
| Args: | |
| speech: (Batch, Length, ...) | |
| speech_lengths: (Batch, ) | |
| text: (Batch, Length) | |
| text_lengths: (Batch,) | |
| """ | |
| assert text_lengths.dim() == 1, text_lengths.shape | |
| # Check that batch_size is unified | |
| assert ( | |
| speech.shape[0] | |
| == speech_lengths.shape[0] | |
| == text.shape[0] | |
| == text_lengths.shape[0] | |
| ), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape) | |
| # pdb.set_trace() | |
| if speech.dim() == 3 and speech.size(2) == 8 and self.mask_ratio != 0: | |
| rate_num = random.random() | |
| # rate_num = 0.1 | |
| if rate_num <= self.mask_ratio: | |
| retain_channel = math.ceil(random.random() * 8) | |
| if retain_channel > 1: | |
| speech = speech[ | |
| :, :, torch.randperm(8)[0:retain_channel].sort().values | |
| ] | |
| else: | |
| speech = speech[:, :, torch.randperm(8)[0]] | |
| # pdb.set_trace() | |
| batch_size = speech.shape[0] | |
| # for data-parallel | |
| text = text[:, : text_lengths.max()] | |
| # 1. Encoder | |
| encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
| # 2a. Attention-decoder branch | |
| if self.ctc_weight == 1.0: | |
| loss_att, acc_att, cer_att, wer_att = None, None, None, None | |
| else: | |
| loss_att, acc_att, cer_att, wer_att = self._calc_att_loss( | |
| encoder_out, encoder_out_lens, text, text_lengths | |
| ) | |
| # 2b. CTC branch | |
| if self.ctc_weight == 0.0: | |
| loss_ctc, cer_ctc = None, None | |
| else: | |
| loss_ctc, cer_ctc = self._calc_ctc_loss( | |
| encoder_out, encoder_out_lens, text, text_lengths | |
| ) | |
| # 2c. RNN-T branch | |
| if self.rnnt_decoder is not None: | |
| _ = self._calc_rnnt_loss(encoder_out, encoder_out_lens, text, text_lengths) | |
| if self.ctc_weight == 0.0: | |
| loss = loss_att | |
| elif self.ctc_weight == 1.0: | |
| loss = loss_ctc | |
| else: | |
| loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att | |
| stats = dict( | |
| loss=loss.detach(), | |
| loss_att=loss_att.detach() if loss_att is not None else None, | |
| loss_ctc=loss_ctc.detach() if loss_ctc is not None else None, | |
| acc=acc_att, | |
| cer=cer_att, | |
| wer=wer_att, | |
| cer_ctc=cer_ctc, | |
| ) | |
| # force_gatherable: to-device and to-tensor if scalar for DataParallel | |
| loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) | |
| return loss, stats, weight | |
| def collect_feats( | |
| self, | |
| speech: torch.Tensor, | |
| speech_lengths: torch.Tensor, | |
| text: torch.Tensor, | |
| text_lengths: torch.Tensor, | |
| ) -> Dict[str, torch.Tensor]: | |
| feats, feats_lengths, channel_size = self._extract_feats(speech, speech_lengths) | |
| return {"feats": feats, "feats_lengths": feats_lengths} | |
| def encode( | |
| self, speech: torch.Tensor, speech_lengths: torch.Tensor | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Frontend + Encoder. Note that this method is used by asr_inference.py | |
| Args: | |
| speech: (Batch, Length, ...) | |
| speech_lengths: (Batch, ) | |
| """ | |
| with autocast(False): | |
| # 1. Extract feats | |
| feats, feats_lengths, channel_size = self._extract_feats( | |
| speech, speech_lengths | |
| ) | |
| # 2. Data augmentation | |
| if self.specaug is not None and self.training: | |
| feats, feats_lengths = self.specaug(feats, feats_lengths) | |
| # 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN | |
| if self.normalize is not None: | |
| feats, feats_lengths = self.normalize(feats, feats_lengths) | |
| # Pre-encoder, e.g. used for raw input data | |
| if self.preencoder is not None: | |
| feats, feats_lengths = self.preencoder(feats, feats_lengths) | |
| # pdb.set_trace() | |
| encoder_out, encoder_out_lens, _ = self.encoder( | |
| feats, feats_lengths, channel_size | |
| ) | |
| assert encoder_out.size(0) == speech.size(0), ( | |
| encoder_out.size(), | |
| speech.size(0), | |
| ) | |
| if encoder_out.dim() == 4: | |
| assert encoder_out.size(2) <= encoder_out_lens.max(), ( | |
| encoder_out.size(), | |
| encoder_out_lens.max(), | |
| ) | |
| else: | |
| assert encoder_out.size(1) <= encoder_out_lens.max(), ( | |
| encoder_out.size(), | |
| encoder_out_lens.max(), | |
| ) | |
| return encoder_out, encoder_out_lens | |
| def _extract_feats( | |
| self, speech: torch.Tensor, speech_lengths: torch.Tensor | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| assert speech_lengths.dim() == 1, speech_lengths.shape | |
| # for data-parallel | |
| speech = speech[:, : speech_lengths.max()] | |
| if self.frontend is not None: | |
| # Frontend | |
| # e.g. STFT and Feature extract | |
| # data_loader may send time-domain signal in this case | |
| # speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim) | |
| feats, feats_lengths, channel_size = self.frontend(speech, speech_lengths) | |
| else: | |
| # No frontend and no feature extract | |
| feats, feats_lengths = speech, speech_lengths | |
| channel_size = 1 | |
| return feats, feats_lengths, channel_size | |
| def _calc_att_loss( | |
| self, | |
| encoder_out: torch.Tensor, | |
| encoder_out_lens: torch.Tensor, | |
| ys_pad: torch.Tensor, | |
| ys_pad_lens: torch.Tensor, | |
| ): | |
| ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) | |
| ys_in_lens = ys_pad_lens + 1 | |
| # 1. Forward decoder | |
| decoder_out, _ = self.decoder( | |
| encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens | |
| ) | |
| # 2. Compute attention loss | |
| loss_att = self.criterion_att(decoder_out, ys_out_pad) | |
| acc_att = th_accuracy( | |
| decoder_out.view(-1, self.vocab_size), | |
| ys_out_pad, | |
| ignore_label=self.ignore_id, | |
| ) | |
| # Compute cer/wer using attention-decoder | |
| if self.training or self.error_calculator is None: | |
| cer_att, wer_att = None, None | |
| else: | |
| ys_hat = decoder_out.argmax(dim=-1) | |
| cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) | |
| return loss_att, acc_att, cer_att, wer_att | |
| def _calc_ctc_loss( | |
| self, | |
| encoder_out: torch.Tensor, | |
| encoder_out_lens: torch.Tensor, | |
| ys_pad: torch.Tensor, | |
| ys_pad_lens: torch.Tensor, | |
| ): | |
| # Calc CTC loss | |
| if encoder_out.dim() == 4: | |
| encoder_out = encoder_out.mean(1) | |
| loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens) | |
| # Calc CER using CTC | |
| cer_ctc = None | |
| if not self.training and self.error_calculator is not None: | |
| ys_hat = self.ctc.argmax(encoder_out).data | |
| cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True) | |
| return loss_ctc, cer_ctc | |
| def _calc_rnnt_loss( | |
| self, | |
| encoder_out: torch.Tensor, | |
| encoder_out_lens: torch.Tensor, | |
| ys_pad: torch.Tensor, | |
| ys_pad_lens: torch.Tensor, | |
| ): | |
| raise NotImplementedError | |
