Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| #!/usr/bin/env python3 | |
| # -*- encoding: utf-8 -*- | |
| # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
| # MIT License (https://opensource.org/licenses/MIT) | |
| # Modified from 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker) | |
| import io | |
| import os | |
| import torch | |
| import requests | |
| import tempfile | |
| import contextlib | |
| import numpy as np | |
| import librosa as sf | |
| from typing import Union | |
| from pathlib import Path | |
| from typing import Generator, Union | |
| from abc import ABCMeta, abstractmethod | |
| import torchaudio.compliance.kaldi as Kaldi | |
| from funasr_detach.models.transformer.utils.nets_utils import pad_list | |
| def check_audio_list(audio: list): | |
| audio_dur = 0 | |
| for i in range(len(audio)): | |
| seg = audio[i] | |
| assert seg[1] >= seg[0], "modelscope error: Wrong time stamps." | |
| assert isinstance(seg[2], np.ndarray), "modelscope error: Wrong data type." | |
| assert ( | |
| int(seg[1] * 16000) - int(seg[0] * 16000) == seg[2].shape[0] | |
| ), "modelscope error: audio data in list is inconsistent with time length." | |
| if i > 0: | |
| assert seg[0] >= audio[i - 1][1], "modelscope error: Wrong time stamps." | |
| audio_dur += seg[1] - seg[0] | |
| return audio_dur | |
| # assert audio_dur > 5, 'modelscope error: The effective audio duration is too short.' | |
| def sv_preprocess(inputs: Union[np.ndarray, list]): | |
| output = [] | |
| for i in range(len(inputs)): | |
| if isinstance(inputs[i], str): | |
| file_bytes = File.read(inputs[i]) | |
| data, fs = sf.load(io.BytesIO(file_bytes), dtype="float32") | |
| if len(data.shape) == 2: | |
| data = data[:, 0] | |
| data = torch.from_numpy(data).unsqueeze(0) | |
| data = data.squeeze(0) | |
| elif isinstance(inputs[i], np.ndarray): | |
| assert ( | |
| len(inputs[i].shape) == 1 | |
| ), "modelscope error: Input array should be [N, T]" | |
| data = inputs[i] | |
| if data.dtype in ["int16", "int32", "int64"]: | |
| data = (data / (1 << 15)).astype("float32") | |
| else: | |
| data = data.astype("float32") | |
| data = torch.from_numpy(data) | |
| else: | |
| raise ValueError( | |
| "modelscope error: The input type is restricted to audio address and nump array." | |
| ) | |
| output.append(data) | |
| return output | |
| def sv_chunk(vad_segments: list, fs=16000) -> list: | |
| config = { | |
| "seg_dur": 1.5, | |
| "seg_shift": 0.75, | |
| } | |
| def seg_chunk(seg_data): | |
| seg_st = seg_data[0] | |
| data = seg_data[2] | |
| chunk_len = int(config["seg_dur"] * fs) | |
| chunk_shift = int(config["seg_shift"] * fs) | |
| last_chunk_ed = 0 | |
| seg_res = [] | |
| for chunk_st in range(0, data.shape[0], chunk_shift): | |
| chunk_ed = min(chunk_st + chunk_len, data.shape[0]) | |
| if chunk_ed <= last_chunk_ed: | |
| break | |
| last_chunk_ed = chunk_ed | |
| chunk_st = max(0, chunk_ed - chunk_len) | |
| chunk_data = data[chunk_st:chunk_ed] | |
| if chunk_data.shape[0] < chunk_len: | |
| chunk_data = np.pad( | |
| chunk_data, (0, chunk_len - chunk_data.shape[0]), "constant" | |
| ) | |
| seg_res.append([chunk_st / fs + seg_st, chunk_ed / fs + seg_st, chunk_data]) | |
| return seg_res | |
| segs = [] | |
| for i, s in enumerate(vad_segments): | |
| segs.extend(seg_chunk(s)) | |
| return segs | |
| def extract_feature(audio): | |
| features = [] | |
| feature_times = [] | |
| feature_lengths = [] | |
| for au in audio: | |
| feature = Kaldi.fbank(au.unsqueeze(0), num_mel_bins=80) | |
| feature = feature - feature.mean(dim=0, keepdim=True) | |
| features.append(feature) | |
| feature_times.append(au.shape[0]) | |
| feature_lengths.append(feature.shape[0]) | |
| # padding for batch inference | |
| features_padded = pad_list(features, pad_value=0) | |
| # features = torch.cat(features) | |
| return features_padded, feature_lengths, feature_times | |
| def postprocess( | |
| segments: list, vad_segments: list, labels: np.ndarray, embeddings: np.ndarray | |
| ) -> list: | |
| assert len(segments) == len(labels) | |
| labels = correct_labels(labels) | |
| distribute_res = [] | |
| for i in range(len(segments)): | |
| distribute_res.append([segments[i][0], segments[i][1], labels[i]]) | |
| # merge the same speakers chronologically | |
| distribute_res = merge_seque(distribute_res) | |
| # accquire speaker center | |
| spk_embs = [] | |
| for i in range(labels.max() + 1): | |
| spk_emb = embeddings[labels == i].mean(0) | |
| spk_embs.append(spk_emb) | |
| spk_embs = np.stack(spk_embs) | |
| def is_overlapped(t1, t2): | |
| if t1 > t2 + 1e-4: | |
| return True | |
| return False | |
| # distribute the overlap region | |
| for i in range(1, len(distribute_res)): | |
| if is_overlapped(distribute_res[i - 1][1], distribute_res[i][0]): | |
| p = (distribute_res[i][0] + distribute_res[i - 1][1]) / 2 | |
| distribute_res[i][0] = p | |
| distribute_res[i - 1][1] = p | |
| # smooth the result | |
| distribute_res = smooth(distribute_res) | |
| return distribute_res | |
| def correct_labels(labels): | |
| labels_id = 0 | |
| id2id = {} | |
| new_labels = [] | |
| for i in labels: | |
| if i not in id2id: | |
| id2id[i] = labels_id | |
| labels_id += 1 | |
| new_labels.append(id2id[i]) | |
| return np.array(new_labels) | |
| def merge_seque(distribute_res): | |
| res = [distribute_res[0]] | |
| for i in range(1, len(distribute_res)): | |
| if distribute_res[i][2] != res[-1][2] or distribute_res[i][0] > res[-1][1]: | |
| res.append(distribute_res[i]) | |
| else: | |
| res[-1][1] = distribute_res[i][1] | |
| return res | |
| def smooth(res, mindur=1): | |
| # short segments are assigned to nearest speakers. | |
| for i in range(len(res)): | |
| res[i][0] = round(res[i][0], 2) | |
| res[i][1] = round(res[i][1], 2) | |
| if res[i][1] - res[i][0] < mindur: | |
| if i == 0: | |
| res[i][2] = res[i + 1][2] | |
| elif i == len(res) - 1: | |
| res[i][2] = res[i - 1][2] | |
| elif res[i][0] - res[i - 1][1] <= res[i + 1][0] - res[i][1]: | |
| res[i][2] = res[i - 1][2] | |
| else: | |
| res[i][2] = res[i + 1][2] | |
| # merge the speakers | |
| res = merge_seque(res) | |
| return res | |
| def distribute_spk(sentence_list, sd_time_list): | |
| sd_sentence_list = [] | |
| for d in sentence_list: | |
| sentence_start = d["start"] | |
| sentence_end = d["end"] | |
| sentence_spk = 0 | |
| max_overlap = 0 | |
| for sd_time in sd_time_list: | |
| spk_st, spk_ed, spk = sd_time | |
| spk_st = spk_st * 1000 | |
| spk_ed = spk_ed * 1000 | |
| overlap = max(min(sentence_end, spk_ed) - max(sentence_start, spk_st), 0) | |
| if overlap > max_overlap: | |
| max_overlap = overlap | |
| sentence_spk = spk | |
| d["spk"] = int(sentence_spk) | |
| sd_sentence_list.append(d) | |
| return sd_sentence_list | |
| class Storage(metaclass=ABCMeta): | |
| """Abstract class of storage. | |
| All backends need to implement two apis: ``read()`` and ``read_text()``. | |
| ``read()`` reads the file as a byte stream and ``read_text()`` reads | |
| the file as texts. | |
| """ | |
| def read(self, filepath: str): | |
| pass | |
| def read_text(self, filepath: str): | |
| pass | |
| def write(self, obj: bytes, filepath: Union[str, Path]) -> None: | |
| pass | |
| def write_text( | |
| self, obj: str, filepath: Union[str, Path], encoding: str = "utf-8" | |
| ) -> None: | |
| pass | |
| class LocalStorage(Storage): | |
| """Local hard disk storage""" | |
| def read(self, filepath: Union[str, Path]) -> bytes: | |
| """Read data from a given ``filepath`` with 'rb' mode. | |
| Args: | |
| filepath (str or Path): Path to read data. | |
| Returns: | |
| bytes: Expected bytes object. | |
| """ | |
| with open(filepath, "rb") as f: | |
| content = f.read() | |
| return content | |
| def read_text(self, filepath: Union[str, Path], encoding: str = "utf-8") -> str: | |
| """Read data from a given ``filepath`` with 'r' mode. | |
| Args: | |
| filepath (str or Path): Path to read data. | |
| encoding (str): The encoding format used to open the ``filepath``. | |
| Default: 'utf-8'. | |
| Returns: | |
| str: Expected text reading from ``filepath``. | |
| """ | |
| with open(filepath, "r", encoding=encoding) as f: | |
| value_buf = f.read() | |
| return value_buf | |
| def write(self, obj: bytes, filepath: Union[str, Path]) -> None: | |
| """Write data to a given ``filepath`` with 'wb' mode. | |
| Note: | |
| ``write`` will create a directory if the directory of ``filepath`` | |
| does not exist. | |
| Args: | |
| obj (bytes): Data to be written. | |
| filepath (str or Path): Path to write data. | |
| """ | |
| dirname = os.path.dirname(filepath) | |
| if dirname and not os.path.exists(dirname): | |
| os.makedirs(dirname, exist_ok=True) | |
| with open(filepath, "wb") as f: | |
| f.write(obj) | |
| def write_text( | |
| self, obj: str, filepath: Union[str, Path], encoding: str = "utf-8" | |
| ) -> None: | |
| """Write data to a given ``filepath`` with 'w' mode. | |
| Note: | |
| ``write_text`` will create a directory if the directory of | |
| ``filepath`` does not exist. | |
| Args: | |
| obj (str): Data to be written. | |
| filepath (str or Path): Path to write data. | |
| encoding (str): The encoding format used to open the ``filepath``. | |
| Default: 'utf-8'. | |
| """ | |
| dirname = os.path.dirname(filepath) | |
| if dirname and not os.path.exists(dirname): | |
| os.makedirs(dirname, exist_ok=True) | |
| with open(filepath, "w", encoding=encoding) as f: | |
| f.write(obj) | |
| def as_local_path( | |
| self, filepath: Union[str, Path] | |
| ) -> Generator[Union[str, Path], None, None]: | |
| """Only for unified API and do nothing.""" | |
| yield filepath | |
| class HTTPStorage(Storage): | |
| """HTTP and HTTPS storage.""" | |
| def read(self, url): | |
| # TODO @wenmeng.zwm add progress bar if file is too large | |
| r = requests.get(url) | |
| r.raise_for_status() | |
| return r.content | |
| def read_text(self, url): | |
| r = requests.get(url) | |
| r.raise_for_status() | |
| return r.text | |
| def as_local_path(self, filepath: str) -> Generator[Union[str, Path], None, None]: | |
| """Download a file from ``filepath``. | |
| ``as_local_path`` is decorated by :meth:`contextlib.contextmanager`. It | |
| can be called with ``with`` statement, and when exists from the | |
| ``with`` statement, the temporary path will be released. | |
| Args: | |
| filepath (str): Download a file from ``filepath``. | |
| Examples: | |
| >>> storage = HTTPStorage() | |
| >>> # After existing from the ``with`` clause, | |
| >>> # the path will be removed | |
| >>> with storage.get_local_path('http://path/to/file') as path: | |
| ... # do something here | |
| """ | |
| try: | |
| f = tempfile.NamedTemporaryFile(delete=False) | |
| f.write(self.read(filepath)) | |
| f.close() | |
| yield f.name | |
| finally: | |
| os.remove(f.name) | |
| def write(self, obj: bytes, url: Union[str, Path]) -> None: | |
| raise NotImplementedError("write is not supported by HTTP Storage") | |
| def write_text( | |
| self, obj: str, url: Union[str, Path], encoding: str = "utf-8" | |
| ) -> None: | |
| raise NotImplementedError("write_text is not supported by HTTP Storage") | |
| class OSSStorage(Storage): | |
| """OSS storage.""" | |
| def __init__(self, oss_config_file=None): | |
| # read from config file or env var | |
| raise NotImplementedError("OSSStorage.__init__ to be implemented in the future") | |
| def read(self, filepath): | |
| raise NotImplementedError("OSSStorage.read to be implemented in the future") | |
| def read_text(self, filepath, encoding="utf-8"): | |
| raise NotImplementedError( | |
| "OSSStorage.read_text to be implemented in the future" | |
| ) | |
| def as_local_path(self, filepath: str) -> Generator[Union[str, Path], None, None]: | |
| """Download a file from ``filepath``. | |
| ``as_local_path`` is decorated by :meth:`contextlib.contextmanager`. It | |
| can be called with ``with`` statement, and when exists from the | |
| ``with`` statement, the temporary path will be released. | |
| Args: | |
| filepath (str): Download a file from ``filepath``. | |
| Examples: | |
| >>> storage = OSSStorage() | |
| >>> # After existing from the ``with`` clause, | |
| >>> # the path will be removed | |
| >>> with storage.get_local_path('http://path/to/file') as path: | |
| ... # do something here | |
| """ | |
| try: | |
| f = tempfile.NamedTemporaryFile(delete=False) | |
| f.write(self.read(filepath)) | |
| f.close() | |
| yield f.name | |
| finally: | |
| os.remove(f.name) | |
| def write(self, obj: bytes, filepath: Union[str, Path]) -> None: | |
| raise NotImplementedError("OSSStorage.write to be implemented in the future") | |
| def write_text( | |
| self, obj: str, filepath: Union[str, Path], encoding: str = "utf-8" | |
| ) -> None: | |
| raise NotImplementedError( | |
| "OSSStorage.write_text to be implemented in the future" | |
| ) | |
| G_STORAGES = {} | |
| class File(object): | |
| _prefix_to_storage: dict = { | |
| "oss": OSSStorage, | |
| "http": HTTPStorage, | |
| "https": HTTPStorage, | |
| "local": LocalStorage, | |
| } | |
| def _get_storage(uri): | |
| assert isinstance(uri, str), f"uri should be str type, but got {type(uri)}" | |
| if "://" not in uri: | |
| # local path | |
| storage_type = "local" | |
| else: | |
| prefix, _ = uri.split("://") | |
| storage_type = prefix | |
| assert storage_type in File._prefix_to_storage, ( | |
| f"Unsupported uri {uri}, valid prefixs: " | |
| f"{list(File._prefix_to_storage.keys())}" | |
| ) | |
| if storage_type not in G_STORAGES: | |
| G_STORAGES[storage_type] = File._prefix_to_storage[storage_type]() | |
| return G_STORAGES[storage_type] | |
| def read(uri: str) -> bytes: | |
| """Read data from a given ``filepath`` with 'rb' mode. | |
| Args: | |
| filepath (str or Path): Path to read data. | |
| Returns: | |
| bytes: Expected bytes object. | |
| """ | |
| storage = File._get_storage(uri) | |
| return storage.read(uri) | |
| def read_text(uri: Union[str, Path], encoding: str = "utf-8") -> str: | |
| """Read data from a given ``filepath`` with 'r' mode. | |
| Args: | |
| filepath (str or Path): Path to read data. | |
| encoding (str): The encoding format used to open the ``filepath``. | |
| Default: 'utf-8'. | |
| Returns: | |
| str: Expected text reading from ``filepath``. | |
| """ | |
| storage = File._get_storage(uri) | |
| return storage.read_text(uri) | |
| def write(obj: bytes, uri: Union[str, Path]) -> None: | |
| """Write data to a given ``filepath`` with 'wb' mode. | |
| Note: | |
| ``write`` will create a directory if the directory of ``filepath`` | |
| does not exist. | |
| Args: | |
| obj (bytes): Data to be written. | |
| filepath (str or Path): Path to write data. | |
| """ | |
| storage = File._get_storage(uri) | |
| return storage.write(obj, uri) | |
| def write_text(obj: str, uri: str, encoding: str = "utf-8") -> None: | |
| """Write data to a given ``filepath`` with 'w' mode. | |
| Note: | |
| ``write_text`` will create a directory if the directory of | |
| ``filepath`` does not exist. | |
| Args: | |
| obj (str): Data to be written. | |
| filepath (str or Path): Path to write data. | |
| encoding (str): The encoding format used to open the ``filepath``. | |
| Default: 'utf-8'. | |
| """ | |
| storage = File._get_storage(uri) | |
| return storage.write_text(obj, uri) | |
| def as_local_path(uri: str) -> Generator[Union[str, Path], None, None]: | |
| """Only for unified API and do nothing.""" | |
| storage = File._get_storage(uri) | |
| with storage.as_local_path(uri) as local_path: | |
| yield local_path | |
