Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu) | |
| # 2022 Xingchen Song ([email protected]) | |
| # 2024 Alibaba Inc (Xiang Lyu) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Modified from ESPnet(https://github.com/espnet/espnet) | |
| """Encoder definition.""" | |
| from typing import Tuple | |
| import time | |
| import torch | |
| import torch.utils.checkpoint as ckpt | |
| import torch.nn.functional as F | |
| from cosyvoice.transformer.convolution import ConvolutionModule | |
| from cosyvoice.transformer.encoder_layer import ( | |
| TransformerEncoderLayer, | |
| ) | |
| from cosyvoice.transformer.encoder_layer import ( | |
| ConformerEncoderLayer, | |
| ) | |
| from cosyvoice.transformer.positionwise_feed_forward import ( | |
| PositionwiseFeedForward, | |
| ) | |
| from cosyvoice.utils.class_utils import ( | |
| COSYVOICE_EMB_CLASSES, | |
| COSYVOICE_SUBSAMPLE_CLASSES, | |
| COSYVOICE_ATTENTION_CLASSES, | |
| COSYVOICE_ACTIVATION_CLASSES, | |
| ) | |
| from cosyvoice.utils.mask import make_pad_mask | |
| from cosyvoice.utils.mask import add_optional_chunk_mask | |
| class BaseEncoder(torch.nn.Module): | |
| def __init__( | |
| self, | |
| input_size: int, | |
| output_size: int = 256, | |
| attention_heads: int = 4, | |
| linear_units: int = 2048, | |
| num_blocks: int = 6, | |
| dropout_rate: float = 0.1, | |
| positional_dropout_rate: float = 0.1, | |
| attention_dropout_rate: float = 0.0, | |
| input_layer: str = "conv2d", | |
| pos_enc_layer_type: str = "abs_pos", | |
| normalize_before: bool = True, | |
| static_chunk_size: int = 0, | |
| use_dynamic_chunk: bool = False, | |
| global_cmvn: torch.nn.Module = None, | |
| use_dynamic_left_chunk: bool = False, | |
| gradient_checkpointing: bool = False, | |
| ): | |
| """ | |
| Args: | |
| input_size (int): input dim | |
| output_size (int): dimension of attention | |
| attention_heads (int): the number of heads of multi head attention | |
| linear_units (int): the hidden units number of position-wise feed | |
| forward | |
| num_blocks (int): the number of decoder blocks | |
| dropout_rate (float): dropout rate | |
| attention_dropout_rate (float): dropout rate in attention | |
| positional_dropout_rate (float): dropout rate after adding | |
| positional encoding | |
| input_layer (str): input layer type. | |
| optional [linear, conv2d, conv2d6, conv2d8] | |
| pos_enc_layer_type (str): Encoder positional encoding layer type. | |
| opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos] | |
| normalize_before (bool): | |
| True: use layer_norm before each sub-block of a layer. | |
| False: use layer_norm after each sub-block of a layer. | |
| static_chunk_size (int): chunk size for static chunk training and | |
| decoding | |
| use_dynamic_chunk (bool): whether use dynamic chunk size for | |
| training or not, You can only use fixed chunk(chunk_size > 0) | |
| or dyanmic chunk size(use_dynamic_chunk = True) | |
| global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module | |
| use_dynamic_left_chunk (bool): whether use dynamic left chunk in | |
| dynamic chunk training | |
| key_bias: whether use bias in attention.linear_k, False for whisper models. | |
| gradient_checkpointing: rerunning a forward-pass segment for each | |
| checkpointed segment during backward. | |
| """ | |
| super().__init__() | |
| self._output_size = output_size | |
| self.global_cmvn = global_cmvn | |
| self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer]( | |
| input_size, | |
| output_size, | |
| dropout_rate, | |
| COSYVOICE_EMB_CLASSES[pos_enc_layer_type]( | |
| output_size, positional_dropout_rate | |
| ), | |
| ) | |
| self.normalize_before = normalize_before | |
| self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5) | |
| self.static_chunk_size = static_chunk_size | |
| self.use_dynamic_chunk = use_dynamic_chunk | |
| self.use_dynamic_left_chunk = use_dynamic_left_chunk | |
| self.gradient_checkpointing = gradient_checkpointing | |
| def output_size(self) -> int: | |
| return self._output_size | |
| def forward( | |
| self, | |
| xs: torch.Tensor, | |
| xs_lens: torch.Tensor, | |
| decoding_chunk_size: int = 0, | |
| num_decoding_left_chunks: int = -1, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Embed positions in tensor. | |
| Args: | |
| xs: padded input tensor (B, T, D) | |
| xs_lens: input length (B) | |
| decoding_chunk_size: decoding chunk size for dynamic chunk | |
| 0: default for training, use random dynamic chunk. | |
| <0: for decoding, use full chunk. | |
| >0: for decoding, use fixed chunk size as set. | |
| num_decoding_left_chunks: number of left chunks, this is for decoding, | |
| the chunk size is decoding_chunk_size. | |
| >=0: use num_decoding_left_chunks | |
| <0: use all left chunks | |
| Returns: | |
| encoder output tensor xs, and subsampled masks | |
| xs: padded output tensor (B, T' ~= T/subsample_rate, D) | |
| masks: torch.Tensor batch padding mask after subsample | |
| (B, 1, T' ~= T/subsample_rate) | |
| NOTE(xcsong): | |
| We pass the `__call__` method of the modules instead of `forward` to the | |
| checkpointing API because `__call__` attaches all the hooks of the module. | |
| https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2 | |
| """ | |
| T = xs.size(1) | |
| masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T) | |
| if self.global_cmvn is not None: | |
| xs = self.global_cmvn(xs) | |
| xs, pos_emb, masks = self.embed(xs, masks) | |
| mask_pad = masks # (B, 1, T/subsample_rate) | |
| chunk_masks = add_optional_chunk_mask( | |
| xs, | |
| masks, | |
| self.use_dynamic_chunk, | |
| self.use_dynamic_left_chunk, | |
| decoding_chunk_size, | |
| self.static_chunk_size, | |
| num_decoding_left_chunks, | |
| ) | |
| print(f"chunk_masks shape: {chunk_masks.shape}") | |
| if self.gradient_checkpointing and self.training: | |
| xs = self.forward_layers_checkpointed(xs, chunk_masks, pos_emb, mask_pad) | |
| else: | |
| xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad) | |
| if self.normalize_before: | |
| xs = self.after_norm(xs) | |
| # Here we assume the mask is not changed in encoder layers, so just | |
| # return the masks before encoder layers, and the masks will be used | |
| # for cross attention with decoder later | |
| return xs, masks | |
| def forward_layers( | |
| self, | |
| xs: torch.Tensor, | |
| chunk_masks: torch.Tensor, | |
| pos_emb: torch.Tensor, | |
| mask_pad: torch.Tensor, | |
| ) -> torch.Tensor: | |
| for layer in self.encoders: | |
| xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) | |
| return xs | |
| def forward_layers_checkpointed( | |
| self, | |
| xs: torch.Tensor, | |
| chunk_masks: torch.Tensor, | |
| pos_emb: torch.Tensor, | |
| mask_pad: torch.Tensor, | |
| ) -> torch.Tensor: | |
| for layer in self.encoders: | |
| xs, chunk_masks, _, _ = ckpt.checkpoint( | |
| layer.__call__, xs, chunk_masks, pos_emb, mask_pad | |
| ) | |
| return xs | |
| def forward_chunk( | |
| self, | |
| xs: torch.Tensor, | |
| offset: int, | |
| required_cache_size: int, | |
| att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0), | |
| cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0), | |
| att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| """ Forward just one chunk | |
| Args: | |
| xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim), | |
| where `time == (chunk_size - 1) * subsample_rate + \ | |
| subsample.right_context + 1` | |
| offset (int): current offset in encoder output time stamp | |
| required_cache_size (int): cache size required for next chunk | |
| compuation | |
| >=0: actual cache size | |
| <0: means all history cache is required | |
| att_cache (torch.Tensor): cache tensor for KEY & VALUE in | |
| transformer/conformer attention, with shape | |
| (elayers, head, cache_t1, d_k * 2), where | |
| `head * d_k == hidden-dim` and | |
| `cache_t1 == chunk_size * num_decoding_left_chunks`. | |
| cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer, | |
| (elayers, b=1, hidden-dim, cache_t2), where | |
| `cache_t2 == cnn.lorder - 1` | |
| Returns: | |
| torch.Tensor: output of current input xs, | |
| with shape (b=1, chunk_size, hidden-dim). | |
| torch.Tensor: new attention cache required for next chunk, with | |
| dynamic shape (elayers, head, ?, d_k * 2) | |
| depending on required_cache_size. | |
| torch.Tensor: new conformer cnn cache required for next chunk, with | |
| same shape as the original cnn_cache. | |
| """ | |
| assert xs.size(0) == 1 | |
| # tmp_masks is just for interface compatibility | |
| tmp_masks = torch.ones(1, xs.size(1), device=xs.device, dtype=torch.bool) | |
| tmp_masks = tmp_masks.unsqueeze(1) | |
| if self.global_cmvn is not None: | |
| xs = self.global_cmvn(xs) | |
| # NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim) | |
| xs, pos_emb, _ = self.embed(xs, tmp_masks, offset) | |
| # NOTE(xcsong): After embed, shape(xs) is (b=1, chunk_size, hidden-dim) | |
| elayers, cache_t1 = att_cache.size(0), att_cache.size(2) | |
| chunk_size = xs.size(1) | |
| attention_key_size = cache_t1 + chunk_size | |
| pos_emb = self.embed.position_encoding( | |
| offset=offset - cache_t1, size=attention_key_size | |
| ) | |
| if required_cache_size < 0: | |
| next_cache_start = 0 | |
| elif required_cache_size == 0: | |
| next_cache_start = attention_key_size | |
| else: | |
| next_cache_start = max(attention_key_size - required_cache_size, 0) | |
| r_att_cache = [] | |
| r_cnn_cache = [] | |
| for i, layer in enumerate(self.encoders): | |
| # NOTE(xcsong): Before layer.forward | |
| # shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2), | |
| # shape(cnn_cache[i]) is (b=1, hidden-dim, cache_t2) | |
| xs, _, new_att_cache, new_cnn_cache = layer( | |
| xs, | |
| att_mask, | |
| pos_emb, | |
| att_cache=att_cache[i : i + 1] if elayers > 0 else att_cache, | |
| cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache, | |
| ) | |
| # NOTE(xcsong): After layer.forward | |
| # shape(new_att_cache) is (1, head, attention_key_size, d_k * 2), | |
| # shape(new_cnn_cache) is (b=1, hidden-dim, cache_t2) | |
| r_att_cache.append(new_att_cache[:, :, next_cache_start:, :]) | |
| r_cnn_cache.append(new_cnn_cache.unsqueeze(0)) | |
| if self.normalize_before: | |
| xs = self.after_norm(xs) | |
| # NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2), | |
| # ? may be larger than cache_t1, it depends on required_cache_size | |
| r_att_cache = torch.cat(r_att_cache, dim=0) | |
| # NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2) | |
| r_cnn_cache = torch.cat(r_cnn_cache, dim=0) | |
| return (xs, r_att_cache, r_cnn_cache) | |
| def forward_chunk_by_chunk( | |
| self, | |
| xs: torch.Tensor, | |
| decoding_chunk_size: int, | |
| num_decoding_left_chunks: int = -1, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Forward input chunk by chunk with chunk_size like a streaming | |
| fashion | |
| Here we should pay special attention to computation cache in the | |
| streaming style forward chunk by chunk. Three things should be taken | |
| into account for computation in the current network: | |
| 1. transformer/conformer encoder layers output cache | |
| 2. convolution in conformer | |
| 3. convolution in subsampling | |
| However, we don't implement subsampling cache for: | |
| 1. We can control subsampling module to output the right result by | |
| overlapping input instead of cache left context, even though it | |
| wastes some computation, but subsampling only takes a very | |
| small fraction of computation in the whole model. | |
| 2. Typically, there are several covolution layers with subsampling | |
| in subsampling module, it is tricky and complicated to do cache | |
| with different convolution layers with different subsampling | |
| rate. | |
| 3. Currently, nn.Sequential is used to stack all the convolution | |
| layers in subsampling, we need to rewrite it to make it work | |
| with cache, which is not preferred. | |
| Args: | |
| xs (torch.Tensor): (1, max_len, dim) | |
| chunk_size (int): decoding chunk size | |
| """ | |
| assert decoding_chunk_size > 0 | |
| # The model is trained by static or dynamic chunk | |
| assert self.static_chunk_size > 0 or self.use_dynamic_chunk | |
| subsampling = self.embed.subsampling_rate | |
| context = self.embed.right_context + 1 # Add current frame | |
| stride = subsampling * decoding_chunk_size | |
| decoding_window = (decoding_chunk_size - 1) * subsampling + context | |
| num_frames = xs.size(1) | |
| att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device) | |
| cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device) | |
| outputs = [] | |
| offset = 0 | |
| required_cache_size = decoding_chunk_size * num_decoding_left_chunks | |
| # Feed forward overlap input step by step | |
| for cur in range(0, num_frames - context + 1, stride): | |
| end = min(cur + decoding_window, num_frames) | |
| chunk_xs = xs[:, cur:end, :] | |
| (y, att_cache, cnn_cache) = self.forward_chunk( | |
| chunk_xs, offset, required_cache_size, att_cache, cnn_cache | |
| ) | |
| outputs.append(y) | |
| offset += y.size(1) | |
| ys = torch.cat(outputs, 1) | |
| masks = torch.ones((1, 1, ys.size(1)), device=ys.device, dtype=torch.bool) | |
| return ys, masks | |
| class TransformerEncoder(BaseEncoder): | |
| """Transformer encoder module.""" | |
| def __init__( | |
| self, | |
| input_size: int, | |
| output_size: int = 256, | |
| attention_heads: int = 4, | |
| linear_units: int = 2048, | |
| num_blocks: int = 6, | |
| dropout_rate: float = 0.1, | |
| positional_dropout_rate: float = 0.1, | |
| attention_dropout_rate: float = 0.0, | |
| input_layer: str = "conv2d", | |
| pos_enc_layer_type: str = "abs_pos", | |
| normalize_before: bool = True, | |
| static_chunk_size: int = 0, | |
| use_dynamic_chunk: bool = False, | |
| global_cmvn: torch.nn.Module = None, | |
| use_dynamic_left_chunk: bool = False, | |
| key_bias: bool = True, | |
| selfattention_layer_type: str = "selfattn", | |
| activation_type: str = "relu", | |
| gradient_checkpointing: bool = False, | |
| ): | |
| """Construct TransformerEncoder | |
| See Encoder for the meaning of each parameter. | |
| """ | |
| super().__init__( | |
| input_size, | |
| output_size, | |
| attention_heads, | |
| linear_units, | |
| num_blocks, | |
| dropout_rate, | |
| positional_dropout_rate, | |
| attention_dropout_rate, | |
| input_layer, | |
| pos_enc_layer_type, | |
| normalize_before, | |
| static_chunk_size, | |
| use_dynamic_chunk, | |
| global_cmvn, | |
| use_dynamic_left_chunk, | |
| gradient_checkpointing, | |
| ) | |
| activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]() | |
| self.encoders = torch.nn.ModuleList( | |
| [ | |
| TransformerEncoderLayer( | |
| output_size, | |
| COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type]( | |
| attention_heads, output_size, attention_dropout_rate, key_bias | |
| ), | |
| PositionwiseFeedForward( | |
| output_size, linear_units, dropout_rate, activation | |
| ), | |
| dropout_rate, | |
| normalize_before, | |
| ) | |
| for _ in range(num_blocks) | |
| ] | |
| ) | |
| class ConformerEncoder(BaseEncoder): | |
| """Conformer encoder module.""" | |
| def __init__( | |
| self, | |
| input_size: int, | |
| output_size: int = 256, | |
| attention_heads: int = 4, | |
| linear_units: int = 2048, | |
| num_blocks: int = 6, | |
| dropout_rate: float = 0.1, | |
| positional_dropout_rate: float = 0.1, | |
| attention_dropout_rate: float = 0.0, | |
| input_layer: str = "conv2d", | |
| pos_enc_layer_type: str = "rel_pos", | |
| normalize_before: bool = True, | |
| static_chunk_size: int = 0, | |
| use_dynamic_chunk: bool = False, | |
| global_cmvn: torch.nn.Module = None, | |
| use_dynamic_left_chunk: bool = False, | |
| positionwise_conv_kernel_size: int = 1, | |
| macaron_style: bool = True, | |
| selfattention_layer_type: str = "rel_selfattn", | |
| activation_type: str = "swish", | |
| use_cnn_module: bool = True, | |
| cnn_module_kernel: int = 15, | |
| causal: bool = False, | |
| cnn_module_norm: str = "batch_norm", | |
| key_bias: bool = True, | |
| gradient_checkpointing: bool = False, | |
| ): | |
| """Construct ConformerEncoder | |
| Args: | |
| input_size to use_dynamic_chunk, see in BaseEncoder | |
| positionwise_conv_kernel_size (int): Kernel size of positionwise | |
| conv1d layer. | |
| macaron_style (bool): Whether to use macaron style for | |
| positionwise layer. | |
| selfattention_layer_type (str): Encoder attention layer type, | |
| the parameter has no effect now, it's just for configure | |
| compatibility. | |
| activation_type (str): Encoder activation function type. | |
| use_cnn_module (bool): Whether to use convolution module. | |
| cnn_module_kernel (int): Kernel size of convolution module. | |
| causal (bool): whether to use causal convolution or not. | |
| key_bias: whether use bias in attention.linear_k, False for whisper models. | |
| """ | |
| super().__init__( | |
| input_size, | |
| output_size, | |
| attention_heads, | |
| linear_units, | |
| num_blocks, | |
| dropout_rate, | |
| positional_dropout_rate, | |
| attention_dropout_rate, | |
| input_layer, | |
| pos_enc_layer_type, | |
| normalize_before, | |
| static_chunk_size, | |
| use_dynamic_chunk, | |
| global_cmvn, | |
| use_dynamic_left_chunk, | |
| gradient_checkpointing, | |
| ) | |
| activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]() | |
| # self-attention module definition | |
| encoder_selfattn_layer_args = ( | |
| attention_heads, | |
| output_size, | |
| attention_dropout_rate, | |
| key_bias, | |
| ) | |
| # feed-forward module definition | |
| positionwise_layer_args = ( | |
| output_size, | |
| linear_units, | |
| dropout_rate, | |
| activation, | |
| ) | |
| # convolution module definition | |
| convolution_layer_args = ( | |
| output_size, | |
| cnn_module_kernel, | |
| activation, | |
| cnn_module_norm, | |
| causal, | |
| ) | |
| self.encoders = torch.nn.ModuleList( | |
| [ | |
| ConformerEncoderLayer( | |
| output_size, | |
| COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type]( | |
| *encoder_selfattn_layer_args | |
| ), | |
| PositionwiseFeedForward(*positionwise_layer_args), | |
| ( | |
| PositionwiseFeedForward(*positionwise_layer_args) | |
| if macaron_style | |
| else None | |
| ), | |
| ( | |
| ConvolutionModule(*convolution_layer_args) | |
| if use_cnn_module | |
| else None | |
| ), | |
| dropout_rate, | |
| normalize_before, | |
| ) | |
| for _ in range(num_blocks) | |
| ] | |
| ) | |
| self.inference_buffers = {} | |
| self.inference_graphs = {} | |
| def capture_inference(self, seq_len_to_capture=[128, 256, 512, 1024]): | |
| device = next(self.parameters()).device | |
| start_time = time.time() | |
| print( | |
| f"Start capture_inference for ConformerEncoder, seq_len_to_capture: {seq_len_to_capture}" | |
| ) | |
| for seq_len in seq_len_to_capture: | |
| xs = torch.randn( | |
| 1, seq_len, self._output_size, device=device, dtype=torch.bfloat16 | |
| ) | |
| xs_lens = torch.tensor([seq_len], device=device, dtype=torch.int32) | |
| decoding_chunk_size = 0 | |
| num_decoding_left_chunks = -1 | |
| T = xs.size(1) | |
| masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T) | |
| if self.global_cmvn is not None: | |
| xs = self.global_cmvn(xs) | |
| xs, pos_emb, masks = self.embed(xs, masks) | |
| mask_pad = masks # (B, 1, T/subsample_rate) | |
| chunk_masks = add_optional_chunk_mask( | |
| xs, | |
| masks, | |
| self.use_dynamic_chunk, | |
| self.use_dynamic_left_chunk, | |
| decoding_chunk_size, | |
| self.static_chunk_size, | |
| num_decoding_left_chunks, | |
| ) | |
| g = torch.cuda.CUDAGraph() | |
| with torch.cuda.graph(g): | |
| out = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad) | |
| self.inference_graphs[seq_len] = g | |
| self.inference_buffers[seq_len] = { | |
| "xs": xs, | |
| "chunk_masks": chunk_masks, | |
| "pos_emb": pos_emb, | |
| "mask_pad": mask_pad, | |
| "out": out, | |
| } | |
| end_time = time.time() | |
| print( | |
| f"Finish capture_inference for ConformerEncoder, time elapsed: {end_time - start_time}" | |
| ) | |
| def inference(self, xs: torch.Tensor, xs_lens: torch.Tensor): | |
| curr_seq_len = xs.shape[1] | |
| target_len = None | |
| for seq_len in sorted(self.inference_graphs.keys()): | |
| if seq_len >= curr_seq_len: | |
| target_len = seq_len | |
| break | |
| if target_len is not None: | |
| xs = F.pad(xs, (0, 0, 0, target_len - curr_seq_len), "constant", 0) | |
| decoding_chunk_size = 0 | |
| num_decoding_left_chunks = -1 | |
| T = xs.size(1) | |
| masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T) | |
| if self.global_cmvn is not None: | |
| xs = self.global_cmvn(xs) | |
| xs, pos_emb, masks = self.embed(xs, masks) | |
| mask_pad = masks # (B, 1, T/subsample_rate) | |
| chunk_masks = add_optional_chunk_mask( | |
| xs, | |
| masks, | |
| self.use_dynamic_chunk, | |
| self.use_dynamic_left_chunk, | |
| decoding_chunk_size, | |
| self.static_chunk_size, | |
| num_decoding_left_chunks, | |
| ) | |
| if target_len is not None: | |
| buffer = self.inference_buffers[target_len] | |
| buffer["xs"].copy_(xs) | |
| buffer["chunk_masks"].copy_(chunk_masks) | |
| buffer["pos_emb"].copy_(pos_emb) | |
| buffer["mask_pad"].copy_(mask_pad) | |
| self.inference_graphs[target_len].replay() | |
| out = buffer["out"][:, :curr_seq_len, :] | |
| else: | |
| out = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad) | |
| if self.normalize_before: | |
| out = self.after_norm(out) | |
| return out, masks | |