Spaces:
Running
on
Zero
Running
on
Zero
| # This is an example that demonstrates how to configure a model file. | |
| # You can modify the configuration according to your own requirements. | |
| # to print the register_table: | |
| # from funasr.register import tables | |
| # tables.print() | |
| # network architecture | |
| model: Branchformer | |
| model_conf: | |
| ctc_weight: 0.3 | |
| lsm_weight: 0.1 # label smoothing option | |
| length_normalized_loss: false | |
| # encoder | |
| encoder: BranchformerEncoder | |
| encoder_conf: | |
| output_size: 256 | |
| use_attn: true | |
| attention_heads: 4 | |
| attention_layer_type: rel_selfattn | |
| pos_enc_layer_type: rel_pos | |
| rel_pos_type: latest | |
| use_cgmlp: true | |
| cgmlp_linear_units: 2048 | |
| cgmlp_conv_kernel: 31 | |
| use_linear_after_conv: false | |
| gate_activation: identity | |
| merge_method: concat | |
| cgmlp_weight: 0.5 # used only if merge_method is "fixed_ave" | |
| attn_branch_drop_rate: 0.0 # used only if merge_method is "learned_ave" | |
| num_blocks: 24 | |
| dropout_rate: 0.1 | |
| positional_dropout_rate: 0.1 | |
| attention_dropout_rate: 0.1 | |
| input_layer: conv2d | |
| stochastic_depth_rate: 0.0 | |
| # decoder | |
| decoder: TransformerDecoder | |
| decoder_conf: | |
| attention_heads: 4 | |
| linear_units: 2048 | |
| num_blocks: 6 | |
| dropout_rate: 0.1 | |
| positional_dropout_rate: 0.1 | |
| self_attention_dropout_rate: 0. | |
| src_attention_dropout_rate: 0. | |
| # frontend related | |
| frontend: WavFrontend | |
| frontend_conf: | |
| fs: 16000 | |
| window: hamming | |
| n_mels: 80 | |
| frame_length: 25 | |
| frame_shift: 10 | |
| dither: 0.0 | |
| lfr_m: 1 | |
| lfr_n: 1 | |
| specaug: SpecAug | |
| specaug_conf: | |
| apply_time_warp: true | |
| time_warp_window: 5 | |
| time_warp_mode: bicubic | |
| apply_freq_mask: true | |
| freq_mask_width_range: | |
| - 0 | |
| - 30 | |
| num_freq_mask: 2 | |
| apply_time_mask: true | |
| time_mask_width_range: | |
| - 0 | |
| - 40 | |
| num_time_mask: 2 | |
| train_conf: | |
| accum_grad: 1 | |
| grad_clip: 5 | |
| max_epoch: 150 | |
| keep_nbest_models: 10 | |
| log_interval: 50 | |
| optim: adam | |
| optim_conf: | |
| lr: 0.001 | |
| weight_decay: 0.000001 | |
| scheduler: warmuplr | |
| scheduler_conf: | |
| warmup_steps: 35000 | |
| dataset: AudioDataset | |
| dataset_conf: | |
| index_ds: IndexDSJsonl | |
| batch_sampler: DynamicBatchLocalShuffleSampler | |
| batch_type: example # example or length | |
| batch_size: 1 # if batch_type is example, batch_size is the numbers of samples; if length, batch_size is source_token_len+target_token_len; | |
| max_token_length: 2048 # filter samples if source_token_len+target_token_len > max_token_length, | |
| buffer_size: 500 | |
| shuffle: True | |
| num_workers: 4 | |
| tokenizer: CharTokenizer | |
| tokenizer_conf: | |
| unk_symbol: <unk> | |
| split_with_space: true | |
| ctc_conf: | |
| dropout_rate: 0.0 | |
| ctc_type: builtin | |
| reduce: true | |
| ignore_nan_grad: true | |
| normalize: null | |