Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| """MLP with convolutional gating (cgMLP) definition. | |
| References: | |
| https://openreview.net/forum?id=RA-zVvZLYIy | |
| https://arxiv.org/abs/2105.08050 | |
| """ | |
| import torch | |
| from funasr_detach.models.transformer.utils.nets_utils import get_activation | |
| from funasr_detach.models.transformer.layer_norm import LayerNorm | |
| class ConvolutionalSpatialGatingUnit(torch.nn.Module): | |
| """Convolutional Spatial Gating Unit (CSGU).""" | |
| def __init__( | |
| self, | |
| size: int, | |
| kernel_size: int, | |
| dropout_rate: float, | |
| use_linear_after_conv: bool, | |
| gate_activation: str, | |
| ): | |
| super().__init__() | |
| n_channels = size // 2 # split input channels | |
| self.norm = LayerNorm(n_channels) | |
| self.conv = torch.nn.Conv1d( | |
| n_channels, | |
| n_channels, | |
| kernel_size, | |
| 1, | |
| (kernel_size - 1) // 2, | |
| groups=n_channels, | |
| ) | |
| if use_linear_after_conv: | |
| self.linear = torch.nn.Linear(n_channels, n_channels) | |
| else: | |
| self.linear = None | |
| if gate_activation == "identity": | |
| self.act = torch.nn.Identity() | |
| else: | |
| self.act = get_activation(gate_activation) | |
| self.dropout = torch.nn.Dropout(dropout_rate) | |
| def espnet_initialization_fn(self): | |
| torch.nn.init.normal_(self.conv.weight, std=1e-6) | |
| torch.nn.init.ones_(self.conv.bias) | |
| if self.linear is not None: | |
| torch.nn.init.normal_(self.linear.weight, std=1e-6) | |
| torch.nn.init.ones_(self.linear.bias) | |
| def forward(self, x, gate_add=None): | |
| """Forward method | |
| Args: | |
| x (torch.Tensor): (N, T, D) | |
| gate_add (torch.Tensor): (N, T, D/2) | |
| Returns: | |
| out (torch.Tensor): (N, T, D/2) | |
| """ | |
| x_r, x_g = x.chunk(2, dim=-1) | |
| x_g = self.norm(x_g) # (N, T, D/2) | |
| x_g = self.conv(x_g.transpose(1, 2)).transpose(1, 2) # (N, T, D/2) | |
| if self.linear is not None: | |
| x_g = self.linear(x_g) | |
| if gate_add is not None: | |
| x_g = x_g + gate_add | |
| x_g = self.act(x_g) | |
| out = x_r * x_g # (N, T, D/2) | |
| out = self.dropout(out) | |
| return out | |
| class ConvolutionalGatingMLP(torch.nn.Module): | |
| """Convolutional Gating MLP (cgMLP).""" | |
| def __init__( | |
| self, | |
| size: int, | |
| linear_units: int, | |
| kernel_size: int, | |
| dropout_rate: float, | |
| use_linear_after_conv: bool, | |
| gate_activation: str, | |
| ): | |
| super().__init__() | |
| self.channel_proj1 = torch.nn.Sequential( | |
| torch.nn.Linear(size, linear_units), torch.nn.GELU() | |
| ) | |
| self.csgu = ConvolutionalSpatialGatingUnit( | |
| size=linear_units, | |
| kernel_size=kernel_size, | |
| dropout_rate=dropout_rate, | |
| use_linear_after_conv=use_linear_after_conv, | |
| gate_activation=gate_activation, | |
| ) | |
| self.channel_proj2 = torch.nn.Linear(linear_units // 2, size) | |
| def forward(self, x, mask): | |
| if isinstance(x, tuple): | |
| xs_pad, pos_emb = x | |
| else: | |
| xs_pad, pos_emb = x, None | |
| xs_pad = self.channel_proj1(xs_pad) # size -> linear_units | |
| xs_pad = self.csgu(xs_pad) # linear_units -> linear_units/2 | |
| xs_pad = self.channel_proj2(xs_pad) # linear_units/2 -> size | |
| if pos_emb is not None: | |
| out = (xs_pad, pos_emb) | |
| else: | |
| out = xs_pad | |
| return out | |
