File size: 8,582 Bytes
597cecf
 
39d2f14
 
 
597cecf
 
 
39d2f14
597cecf
 
 
 
39d2f14
 
 
 
597cecf
39d2f14
 
597cecf
 
 
 
 
 
 
 
 
 
 
 
39d2f14
 
597cecf
 
 
 
 
 
 
 
 
 
 
 
 
 
39d2f14
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
597cecf
 
39d2f14
597cecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39d2f14
 
 
597cecf
 
39d2f14
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
 
 
 
597cecf
39d2f14
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
 
 
 
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
 
 
 
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
 
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
 
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
597cecf
39d2f14
597cecf
39d2f14
597cecf
39d2f14
 
 
597cecf
39d2f14
597cecf
 
 
 
 
 
 
39d2f14
597cecf
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
597cecf
39d2f14
597cecf
39d2f14
 
597cecf
39d2f14
597cecf
 
39d2f14
 
 
 
 
 
 
597cecf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
## IMPORTS ##
import os
import tempfile
import time
from pathlib import Path

import gradio as gr
import numpy as np
import spaces
import torch
import torchaudio
from cached_path import cached_path
from huggingface_hub import hf_hub_download
from transformers import pipeline

from infer import DMOInference

## CUDA DEVICE ##
device = "cuda" if torch.cuda.is_available() else "cpu"

## LOAD MODELS ##
asr_pipe = pipeline(
    "automatic-speech-recognition", model="openai/whisper-large-v3-turbo", device=device
)
model = DMOInference(
    student_checkpoint_path=str(cached_path("hf://yl4579/DMOSpeech2/model_85000.pt")),
    duration_predictor_path=str(cached_path("hf://yl4579/DMOSpeech2/model_1500.pt")),
    device=device,
    model_type="F5TTS_Base",
)


def transcribe(ref_audio, language=None):
    """Transcribe audio using the pre-loaded ASR pipeline."""
    return asr_pipe(
        ref_audio,
        chunk_length_s=30,
        batch_size=128,
        generate_kwargs=(
            {"task": "transcribe", "language": language}
            if language
            else {"task": "transcribe"}
        ),
        return_timestamps=False,
    )["text"].strip()


@spaces.GPU(duration=120)
def generate_speech(
    prompt_audio,
    prompt_text,
    target_text,
    mode,
    temperature,
    custom_teacher_steps,
    custom_teacher_stopping_time,
    custom_student_start_step,
    verbose,
):
    if prompt_audio is None:
        raise gr.Error("Please upload a reference audio!")

    if not target_text:
        raise gr.Error("Please enter text to generate!")

    if not prompt_text and prompt_text != "":
        prompt_text = transcribe(prompt_audio)


    if mode == "Student Only (4 steps)":
        teacher_steps = 0
        student_start_step = 0
        teacher_stopping_time = 1.0
    elif mode == "Teacher-Guided (8 steps)":
        teacher_steps = 16
        teacher_stopping_time = 0.07
        student_start_step = 1
    elif mode == "High Diversity (16 steps)":
        teacher_steps = 24
        teacher_stopping_time = 0.3
        student_start_step = 2
    else:  # Custom
        teacher_steps = custom_teacher_steps
        teacher_stopping_time = custom_teacher_stopping_time
        student_start_step = custom_student_start_step

    # Generate speech
    generated_audio = model.generate(
        gen_text=target_text,
        audio_path=prompt_audio,
        prompt_text=prompt_text if prompt_text else None,
        teacher_steps=teacher_steps,
        teacher_stopping_time=teacher_stopping_time,
        student_start_step=student_start_step,
        temperature=temperature,
        verbose=verbose,
    )


    # Save audio
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        output_path = tmp_file.name

    if isinstance(generated_audio, np.ndarray):
        generated_audio = torch.from_numpy(generated_audio)

    if generated_audio.dim() == 1:
        generated_audio = generated_audio.unsqueeze(0)

    torchaudio.save(output_path, generated_audio, 24000)

    return (
        output_path,
        "Success!",
        (
            f"Mode: {mode} | Transcribed: {prompt_text[:50]}..."
            if not prompt_text
            else f"Mode: {mode}"
        ),
    )


# Create Gradio interface
with gr.Blocks(title="DMOSpeech 2 - Zero-Shot TTS") as demo:
    gr.Markdown(
        f"""
    # πŸŽ™οΈ DMOSpeech 2: Zero-Shot Text-to-Speech
    
    Generate natural speech in any voice with just a short reference audio!     
    """
    )

    with gr.Row():
        with gr.Column(scale=1):
            # Reference audio input
            prompt_audio = gr.Audio(
                label="πŸ“Ž Reference Audio",
                type="filepath",
                sources=["upload", "microphone"],
            )

            prompt_text = gr.Textbox(
                label="πŸ“ Reference Text (leave empty for auto-transcription)",
                placeholder="The text spoken in the reference audio...",
                lines=2,
            )

            target_text = gr.Textbox(
                label="✍️ Text to Generate",
                placeholder="Enter the text you want to synthesize...",
                lines=4,
            )

            # Generation mode
            mode = gr.Radio(
                choices=[
                    "Student Only (4 steps)",
                    "Teacher-Guided (8 steps)",
                    "High Diversity (16 steps)",
                    "Custom",
                ],
                value="Teacher-Guided (8 steps)",
                label="πŸš€ Generation Mode",
                info="Choose speed vs quality/diversity tradeoff",
            )

            # Advanced settings (collapsible)
            with gr.Accordion("βš™οΈ Advanced Settings", open=False):
                temperature = gr.Slider(
                    minimum=0.0,
                    maximum=2.0,
                    value=0.0,
                    step=0.1,
                    label="Duration Temperature",
                    info="0 = deterministic, >0 = more variation in speech rhythm",
                )

                with gr.Group(visible=False) as custom_settings:
                    gr.Markdown("### Custom Mode Settings")
                    custom_teacher_steps = gr.Slider(
                        minimum=0,
                        maximum=32,
                        value=16,
                        step=1,
                        label="Teacher Steps",
                        info="More steps = higher quality",
                    )

                    custom_teacher_stopping_time = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.07,
                        step=0.01,
                        label="Teacher Stopping Time",
                        info="When to switch to student",
                    )

                    custom_student_start_step = gr.Slider(
                        minimum=0,
                        maximum=4,
                        value=1,
                        step=1,
                        label="Student Start Step",
                        info="Which student step to start from",
                    )

                verbose = gr.Checkbox(
                    value=False,
                    label="Verbose Output",
                    info="Show detailed generation steps",
                )

            generate_btn = gr.Button("🎡 Generate Speech", variant="primary", size="lg")

        with gr.Column(scale=1):
            # Output
            output_audio = gr.Audio(
                label="πŸ”Š Generated Speech", type="filepath", autoplay=True
            )

            status = gr.Textbox(label="Status", interactive=False)

            metrics = gr.Textbox(label="Performance Metrics", interactive=False)

            info = gr.Textbox(label="Generation Info", interactive=False)

            # Tips
            gr.Markdown(
                """
            ### πŸ’‘ Quick Tips:
            
            - **Auto-transcription**: Leave reference text empty to auto-transcribe
            - **Student Only**: Fastest (4 steps), good quality
            - **Teacher-Guided**: Best balance (8 steps), recommended
            - **High Diversity**: More natural prosody (16 steps)
            - **Custom Mode**: Fine-tune all parameters
            
            ### πŸ“Š Expected RTF (Real-Time Factor):
            - Student Only: ~0.05x (20x faster than real-time)
            - Teacher-Guided: ~0.10x (10x faster)
            - High Diversity: ~0.20x (5x faster)
            """
            )

    # Event handler
    generate_btn.click(
        generate_speech,
        inputs=[
            prompt_audio,
            prompt_text,
            target_text,
            mode,
            temperature,
            custom_teacher_steps,
            custom_teacher_stopping_time,
            custom_student_start_step,
            verbose,
        ],
        outputs=[output_audio, status, metrics, info],
    )

    # Update visibility of custom settings based on mode
    def update_custom_visibility(mode):
        is_custom = mode == "Custom"
        return gr.update(visible=is_custom)

    mode.change(update_custom_visibility, inputs=[mode], outputs=[custom_settings])

# Launch the app
if __name__ == "__main__":
    if not model_loaded:
        print(f"Warning: Model failed to load - {status_message}")
    if not asr_pipe:
        print("Warning: ASR pipeline not available - auto-transcription disabled")

    demo.launch()