File size: 5,081 Bytes
d4a2b52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d41d663
 
 
 
 
 
 
 
 
 
d4a2b52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d41d663
 
 
 
 
d4a2b52
 
 
d41d663
d4a2b52
 
 
d41d663
 
 
d4a2b52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d41d663
d4a2b52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d41d663
d4a2b52
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Standard library imports
import os
from datetime import datetime
import subprocess
import time

# Third-party imports
import numpy as np
import torch
from PIL import Image
import accelerate
import gradio as gr
import spaces
from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    AutoTokenizer,
    AutoProcessor
)

# Local imports
from qwen_vl_utils import process_vision_info

# Set device agnostic code
if torch.cuda.is_available():
    device = "cuda"
elif (torch.backends.mps.is_available()) and (torch.backends.mps.is_built()):
    device = "mps"
else:
    device = "cpu"

print(f"[INFO] Using device: {device}")


def array_to_image_path(image_array):
    if image_array is None:
        raise ValueError("No image provided. Please upload an image before submitting.")
    # Convert numpy array to PIL Image
    img = Image.fromarray(np.uint8(image_array))
    
    # Generate a unique filename using timestamp
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"image_{timestamp}.png"
    
    # Save the image
    img.save(filename)
    
    # Get the full path of the saved image
    full_path = os.path.abspath(filename)
    
    return full_path
    
models = {
    "Qwen/Qwen2.5-VL-7B-Instruct": Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", 
                                                                                      trust_remote_code=True, 
                                                                                      torch_dtype="auto",
                                                                                      device_map="auto").eval(),

    "Qwen/Qwen2.5-VL-3B-Instruct": Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct", 
                                                                                      trust_remote_code=True, 
                                                                                      torch_dtype="auto",
                                                                                      device_map="auto").eval()

}

processors = {
    "Qwen/Qwen2.5-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True),
    "Qwen/Qwen2.5-VL-3B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct", trust_remote_code=True)

}

DESCRIPTION = "[Qwen2.5-VL Demo](https://huggingface.co/collections/Qwen/qwen25-vl-6795ffac22b334a837c0f9a5)"

kwargs = {}
kwargs['torch_dtype'] = torch.bfloat16

user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"

@spaces.GPU
def run_example(image, text_input=None, model_id=None):
    start_time = time.time()
    image_path = array_to_image_path(image)
    
    print(image_path)
    model = models[model_id]
    processor = processors[model_id]

    image = Image.fromarray(image).convert("RGB")
    messages = [
    {
            "role": "user",
            "content": [
                {
                    "type": "image",
                    "image": image_path,
                },
                {"type": "text", "text": text_input},
            ],
        }
    ]
    
    # Preparation for inference
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to(device)
    
    # Inference: Generation of the output
    generated_ids = model.generate(**inputs, max_new_tokens=1024)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )

    end_time = time.time()
    total_time = round(end_time - start_time, 2)
    
    return output_text[0], total_time

css = """
  #output {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Tab(label="Qwen2.5-VL Input"):
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(label="Input Picture")
                model_selector = gr.Dropdown(choices=list(models.keys()), 
                                             label="Model", 
                                             value="Qwen/Qwen2.5-VL-7B-Instruct")
                text_input = gr.Textbox(label="Text Prompt")
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                output_text = gr.Textbox(label="Output Text")
                time_taken = gr.Textbox(label="Time taken for processing + inference")

        submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text, time_taken])

demo.queue(api_open=False)
demo.launch(debug=True)