Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,97 +1,73 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
-
from transformers import AutoModelForCausalLM, AutoProcessor
|
| 4 |
import torch
|
| 5 |
from PIL import Image
|
| 6 |
import subprocess
|
| 7 |
-
|
| 8 |
-
# Install flash-attn with no CUDA build isolation
|
| 9 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 10 |
|
| 11 |
-
# Define models and processors with pinning to a stable revision
|
| 12 |
models = {
|
| 13 |
-
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained(
|
| 14 |
-
"microsoft/Phi-3.5-vision-instruct",
|
| 15 |
-
revision="specific-revision-hash", # Pinning to a specific revision for stability
|
| 16 |
-
trust_remote_code=True,
|
| 17 |
-
torch_dtype="auto",
|
| 18 |
-
_attn_implementation="flash_attention_2"
|
| 19 |
-
).cuda().eval()
|
| 20 |
}
|
| 21 |
|
| 22 |
processors = {
|
| 23 |
-
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained(
|
| 24 |
-
"microsoft/Phi-3.5-vision-instruct",
|
| 25 |
-
revision="specific-revision-hash", # Pinning to a specific revision for stability
|
| 26 |
-
trust_remote_code=True
|
| 27 |
-
)
|
| 28 |
}
|
| 29 |
|
| 30 |
-
# Fallback to GPT-2 for testing
|
| 31 |
-
def load_fallback_model():
|
| 32 |
-
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
| 33 |
-
model = GPT2LMHeadModel.from_pretrained("gpt2").cuda().eval()
|
| 34 |
-
return model, tokenizer
|
| 35 |
-
|
| 36 |
-
# Default description and prompt
|
| 37 |
DESCRIPTION = "[Phi-3.5-vision Demo](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)"
|
| 38 |
-
default_question = "You are an image to prompt converter. Your work is to observe each and every detail of the image and craft a detailed prompt under 100 words."
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
@spaces.GPU
|
| 42 |
def run_example(image, text_input=default_question, model_id="microsoft/Phi-3.5-vision-instruct"):
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
except KeyError as e:
|
| 47 |
-
print(f"Error loading model: {e}. Falling back to GPT-2.")
|
| 48 |
-
model, processor = load_fallback_model()
|
| 49 |
-
|
| 50 |
-
user_prompt = '<|user|>\n'
|
| 51 |
-
assistant_prompt = '<|assistant|>\n'
|
| 52 |
-
prompt_suffix = "<|end|>\n"
|
| 53 |
-
|
| 54 |
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
|
| 55 |
image = Image.fromarray(image).convert("RGB")
|
| 56 |
|
| 57 |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
| 58 |
-
generate_ids = model.generate(**inputs,
|
|
|
|
|
|
|
|
|
|
| 59 |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
| 60 |
-
response = processor.batch_decode(generate_ids,
|
|
|
|
|
|
|
| 61 |
return response
|
| 62 |
|
| 63 |
-
# Custom CSS for styling
|
| 64 |
css = """
|
| 65 |
-
#
|
| 66 |
-
height: 500px;
|
| 67 |
-
overflow: auto;
|
| 68 |
-
border: 1px solid #
|
| 69 |
-
}
|
| 70 |
-
#model_selector, #text_input {
|
| 71 |
-
display: none !important;
|
| 72 |
}
|
| 73 |
-
#
|
| 74 |
-
|
| 75 |
-
padding: 20px;
|
| 76 |
-
border-radius: 10px;
|
| 77 |
}
|
| 78 |
"""
|
| 79 |
|
| 80 |
-
# Gradio interface with styling and layout improvements
|
| 81 |
with gr.Blocks(css=css) as demo:
|
| 82 |
gr.Markdown(DESCRIPTION)
|
| 83 |
-
with gr.
|
| 84 |
-
with gr.
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
| 91 |
|
| 92 |
-
|
| 93 |
-
submit_btn.click(run_example, [input_img, text_input, model_selector], output_text)
|
| 94 |
|
| 95 |
-
# Launch Gradio interface
|
| 96 |
demo.queue(api_open=False)
|
| 97 |
-
demo.launch(debug=True, show_api=False)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
| 4 |
import torch
|
| 5 |
from PIL import Image
|
| 6 |
import subprocess
|
|
|
|
|
|
|
| 7 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 8 |
|
|
|
|
| 9 |
models = {
|
| 10 |
+
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
}
|
| 12 |
|
| 13 |
processors = {
|
| 14 |
+
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
}
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
DESCRIPTION = "[Phi-3.5-vision Demo](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)"
|
|
|
|
| 18 |
|
| 19 |
+
kwargs = {}
|
| 20 |
+
kwargs['torch_dtype'] = torch.bfloat16
|
| 21 |
+
|
| 22 |
+
user_prompt = '<|user|>\n'
|
| 23 |
+
assistant_prompt = '<|assistant|>\n'
|
| 24 |
+
prompt_suffix = "<|end|>\n"
|
| 25 |
+
|
| 26 |
+
default_question = "You are an image to prompt converter. Your work is to observe each and every detail of the image and craft a detailed prompt under 100 words in this format: [image content/subject, description of action, state, and mood], [art form, style], [artist/photographer reference if needed], [additional settings such as camera and lens settings, lighting, colors, effects, texture, background, rendering]."
|
| 27 |
+
|
| 28 |
@spaces.GPU
|
| 29 |
def run_example(image, text_input=default_question, model_id="microsoft/Phi-3.5-vision-instruct"):
|
| 30 |
+
model = models[model_id]
|
| 31 |
+
processor = processors[model_id]
|
| 32 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
|
| 34 |
image = Image.fromarray(image).convert("RGB")
|
| 35 |
|
| 36 |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
| 37 |
+
generate_ids = model.generate(**inputs,
|
| 38 |
+
max_new_tokens=1000,
|
| 39 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 40 |
+
)
|
| 41 |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
| 42 |
+
response = processor.batch_decode(generate_ids,
|
| 43 |
+
skip_special_tokens=True,
|
| 44 |
+
clean_up_tokenization_spaces=False)[0]
|
| 45 |
return response
|
| 46 |
|
|
|
|
| 47 |
css = """
|
| 48 |
+
#output {
|
| 49 |
+
height: 500px;
|
| 50 |
+
overflow: auto;
|
| 51 |
+
border: 1px solid #ccc;
|
|
|
|
|
|
|
|
|
|
| 52 |
}
|
| 53 |
+
#model_selector, #text_input {
|
| 54 |
+
display: none !important;
|
|
|
|
|
|
|
| 55 |
}
|
| 56 |
"""
|
| 57 |
|
|
|
|
| 58 |
with gr.Blocks(css=css) as demo:
|
| 59 |
gr.Markdown(DESCRIPTION)
|
| 60 |
+
with gr.Tab(label="Phi-3.5 Input"):
|
| 61 |
+
with gr.Row():
|
| 62 |
+
with gr.Column():
|
| 63 |
+
input_img = gr.Image(label="Input Picture")
|
| 64 |
+
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct", visible=False)
|
| 65 |
+
text_input = gr.Textbox(label="Question", value=default_question, visible=False)
|
| 66 |
+
submit_btn = gr.Button(value="Submit")
|
| 67 |
+
with gr.Column():
|
| 68 |
+
output_text = gr.Textbox(label="Output Text")
|
| 69 |
|
| 70 |
+
submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text])
|
|
|
|
| 71 |
|
|
|
|
| 72 |
demo.queue(api_open=False)
|
| 73 |
+
demo.launch(debug=True, show_api=False)
|