Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,100 +1,73 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoProcessor
|
3 |
import torch
|
4 |
from PIL import Image
|
|
|
|
|
5 |
|
6 |
-
# Model and Processor Initialization
|
7 |
models = {
|
8 |
-
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained(
|
9 |
-
"microsoft/Phi-3.5-vision-instruct",
|
10 |
-
trust_remote_code=True,
|
11 |
-
torch_dtype="auto",
|
12 |
-
_attn_implementation="flash_attention_2"
|
13 |
-
).cuda().eval()
|
14 |
}
|
15 |
|
16 |
processors = {
|
17 |
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True)
|
18 |
}
|
19 |
|
20 |
-
|
21 |
-
default_question = (
|
22 |
-
"You are an image-to-prompt converter. Your work is to observe each and every detail of the image and "
|
23 |
-
"craft a detailed prompt under 100 words in this format: [image content/subject, description of action, state, "
|
24 |
-
"and mood], [art form, style], [artist/photographer reference if needed], [additional settings such as camera "
|
25 |
-
"and lens settings, lighting, colors, effects, texture, background, rendering]."
|
26 |
-
)
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
model = models["microsoft/Phi-3.5-vision-instruct"]
|
31 |
-
processor = processors["microsoft/Phi-3.5-vision-instruct"]
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
image = Image.fromarray(image).convert("RGB")
|
35 |
|
36 |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
37 |
-
generate_ids = model.generate(
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
)
|
42 |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
43 |
-
response = processor.batch_decode(
|
44 |
-
|
45 |
-
|
46 |
return response
|
47 |
|
48 |
-
# Enhanced CSS for streamlined UI
|
49 |
css = """
|
50 |
-
#
|
51 |
-
|
52 |
-
|
53 |
-
border
|
54 |
-
border: 2px solid #333;
|
55 |
-
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
|
56 |
-
max-width: 450px;
|
57 |
-
margin: auto;
|
58 |
-
}
|
59 |
-
#input_image {
|
60 |
-
margin-top: 15px;
|
61 |
-
border: 2px solid #333;
|
62 |
-
border-radius: 8px;
|
63 |
-
height: 180px;
|
64 |
-
object-fit: contain;
|
65 |
-
}
|
66 |
-
#output_caption {
|
67 |
-
margin-top: 15px;
|
68 |
-
border: 2px solid #333;
|
69 |
-
border-radius: 8px;
|
70 |
-
height: 180px;
|
71 |
-
overflow-y: auto;
|
72 |
-
}
|
73 |
-
#run_button {
|
74 |
-
background-color: #fff;
|
75 |
-
color: black;
|
76 |
-
border-radius: 10px;
|
77 |
-
padding: 10px;
|
78 |
-
cursor: pointer;
|
79 |
-
transition: background-color 0.3s ease;
|
80 |
-
margin-top: 15px;
|
81 |
}
|
82 |
-
#
|
83 |
-
|
84 |
}
|
85 |
"""
|
86 |
|
87 |
-
# Gradio Interface with Adjustments
|
88 |
with gr.Blocks(css=css) as demo:
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
|
95 |
-
fn=generate_caption,
|
96 |
-
inputs=[input_image],
|
97 |
-
outputs=output_caption,
|
98 |
-
)
|
99 |
|
100 |
-
demo.
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
from transformers import AutoModelForCausalLM, AutoProcessor
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
+
import subprocess
|
7 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
8 |
|
|
|
9 |
models = {
|
10 |
+
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
|
|
|
|
|
|
|
|
|
|
|
11 |
}
|
12 |
|
13 |
processors = {
|
14 |
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True)
|
15 |
}
|
16 |
|
17 |
+
DESCRIPTION = "[Phi-3.5-vision Demo](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)"
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
kwargs = {}
|
20 |
+
kwargs['torch_dtype'] = torch.bfloat16
|
|
|
|
|
21 |
|
22 |
+
user_prompt = '<|user|>\n'
|
23 |
+
assistant_prompt = '<|assistant|>\n'
|
24 |
+
prompt_suffix = "<|end|>\n"
|
25 |
+
|
26 |
+
default_question = "You are an image to prompt converter. Your work is to observe each and every detail of the image and craft a detailed prompt under 100 words in this format: [image content/subject, description of action, state, and mood], [art form, style], [artist/photographer reference if needed], [additional settings such as camera and lens settings, lighting, colors, effects, texture, background, rendering]."
|
27 |
+
|
28 |
+
@spaces.GPU
|
29 |
+
def run_example(image, text_input=default_question, model_id="microsoft/Phi-3.5-vision-instruct"):
|
30 |
+
model = models[model_id]
|
31 |
+
processor = processors[model_id]
|
32 |
+
|
33 |
+
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
|
34 |
image = Image.fromarray(image).convert("RGB")
|
35 |
|
36 |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
37 |
+
generate_ids = model.generate(**inputs,
|
38 |
+
max_new_tokens=1000,
|
39 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
40 |
+
)
|
|
|
41 |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
42 |
+
response = processor.batch_decode(generate_ids,
|
43 |
+
skip_special_tokens=True,
|
44 |
+
clean_up_tokenization_spaces=False)[0]
|
45 |
return response
|
46 |
|
|
|
47 |
css = """
|
48 |
+
#output {
|
49 |
+
height: 500px;
|
50 |
+
overflow: auto;
|
51 |
+
border: 1px solid #ccc;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
}
|
53 |
+
#model_selector, #text_input {
|
54 |
+
display: none !important;
|
55 |
}
|
56 |
"""
|
57 |
|
|
|
58 |
with gr.Blocks(css=css) as demo:
|
59 |
+
gr.Markdown(DESCRIPTION)
|
60 |
+
with gr.Tab(label="Phi-3.5 Input"):
|
61 |
+
with gr.Row():
|
62 |
+
with gr.Column():
|
63 |
+
input_img = gr.Image(label="Input Picture")
|
64 |
+
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct", visible=False)
|
65 |
+
text_input = gr.Textbox(label="Question", value=default_question, visible=False)
|
66 |
+
submit_btn = gr.Button(value="Submit")
|
67 |
+
with gr.Column():
|
68 |
+
output_text = gr.Textbox(label="Output Text")
|
69 |
|
70 |
+
submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text])
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
demo.queue(api_open=False)
|
73 |
+
demo.launch(debug=True, show_api=False)
|