Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,67 +3,78 @@ import spaces
|
|
3 |
from transformers import AutoModelForCausalLM, AutoProcessor
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
-
import subprocess
|
7 |
-
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
8 |
|
|
|
9 |
models = {
|
10 |
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
|
11 |
-
|
12 |
}
|
13 |
|
14 |
processors = {
|
15 |
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True)
|
16 |
}
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
kwargs = {}
|
21 |
-
kwargs['torch_dtype'] = torch.bfloat16
|
22 |
-
|
23 |
-
user_prompt = '<|user|>\n'
|
24 |
-
assistant_prompt = '<|assistant|>\n'
|
25 |
-
prompt_suffix = "<|end|>\n"
|
26 |
|
27 |
@spaces.GPU
|
28 |
-
def run_example(image,
|
29 |
model = models[model_id]
|
30 |
processor = processors[model_id]
|
31 |
|
32 |
-
|
|
|
33 |
image = Image.fromarray(image).convert("RGB")
|
34 |
|
35 |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
36 |
-
generate_ids = model.generate(**inputs,
|
37 |
-
max_new_tokens=1000,
|
38 |
-
eos_token_id=processor.tokenizer.eos_token_id,
|
39 |
-
)
|
40 |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
41 |
-
response = processor.batch_decode(generate_ids,
|
42 |
-
skip_special_tokens=True,
|
43 |
-
clean_up_tokenization_spaces=False)[0]
|
44 |
return response
|
45 |
|
46 |
css = """
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
border:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
}
|
52 |
"""
|
53 |
|
54 |
with gr.Blocks(css=css) as demo:
|
55 |
-
gr.
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
input_img = gr.Image(label="Input Picture")
|
60 |
-
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct")
|
61 |
-
text_input = gr.Textbox(label="Question")
|
62 |
-
submit_btn = gr.Button(value="Submit")
|
63 |
-
with gr.Column():
|
64 |
-
output_text = gr.Textbox(label="Output Text")
|
65 |
|
66 |
-
|
67 |
|
68 |
-
demo.
|
69 |
-
demo.launch(debug=True, show_api=False)
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoProcessor
|
4 |
import torch
|
5 |
from PIL import Image
|
|
|
|
|
6 |
|
7 |
+
# Load model and processor
|
8 |
models = {
|
9 |
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
|
|
|
10 |
}
|
11 |
|
12 |
processors = {
|
13 |
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True)
|
14 |
}
|
15 |
|
16 |
+
# Set the default query
|
17 |
+
DEFAULT_QUERY = "You are an image to prompt converter. Your work is to observe each and every detail of the image and craft a detailed prompt under 100 words in this format: [image content/subject, description of action, state, and mood], [art form, style], [artist/photographer reference if needed], [additional settings such as camera and lens settings, lighting, colors, effects, texture, background, rendering]."
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
@spaces.GPU
|
20 |
+
def run_example(image, model_id="microsoft/Phi-3.5-vision-instruct"):
|
21 |
model = models[model_id]
|
22 |
processor = processors[model_id]
|
23 |
|
24 |
+
# Use the default query directly without a user input text field
|
25 |
+
prompt = f"<|user|>\n<|image_1|>\n{DEFAULT_QUERY}<|end|>\n<|assistant|>"
|
26 |
image = Image.fromarray(image).convert("RGB")
|
27 |
|
28 |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
29 |
+
generate_ids = model.generate(**inputs, max_new_tokens=1000, eos_token_id=processor.tokenizer.eos_token_id)
|
|
|
|
|
|
|
30 |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
31 |
+
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
|
|
|
32 |
return response
|
33 |
|
34 |
css = """
|
35 |
+
#container {
|
36 |
+
background-color: #f9f9f9;
|
37 |
+
padding: 20px;
|
38 |
+
border-radius: 15px;
|
39 |
+
border: 2px solid #333;
|
40 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
|
41 |
+
max-width: 450px;
|
42 |
+
margin: auto;
|
43 |
+
}
|
44 |
+
#input_image {
|
45 |
+
margin-top: 15px;
|
46 |
+
border: 2px solid #333;
|
47 |
+
border-radius: 8px;
|
48 |
+
height: 180px;
|
49 |
+
object-fit: contain;
|
50 |
+
}
|
51 |
+
#output_text {
|
52 |
+
margin-top: 15px;
|
53 |
+
border: 2px solid #333;
|
54 |
+
border-radius: 8px;
|
55 |
+
height: 180px;
|
56 |
+
overflow-y: auto;
|
57 |
+
}
|
58 |
+
#submit_btn {
|
59 |
+
background-color: #fff;
|
60 |
+
color: black;
|
61 |
+
border-radius: 10px;
|
62 |
+
padding: 10px;
|
63 |
+
cursor: pointer;
|
64 |
+
transition: background-color 0.3s ease;
|
65 |
+
margin-top: 15px;
|
66 |
+
}
|
67 |
+
#submit_btn:hover {
|
68 |
+
background-color: #333;
|
69 |
}
|
70 |
"""
|
71 |
|
72 |
with gr.Blocks(css=css) as demo:
|
73 |
+
with gr.Column(elem_id="container"):
|
74 |
+
input_image = gr.Image(type="pil", label="Upload Image", elem_id="input_image")
|
75 |
+
submit_btn = gr.Button(value="Generate Prompt", elem_id="submit_btn")
|
76 |
+
output_text = gr.Textbox(label="Prompt Output", elem_id="output_text", show_copy_button=True, lines=6)
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
submit_btn.click(run_example, [input_image], output_text)
|
79 |
|
80 |
+
demo.launch(share=False)
|
|