Spaces:
Runtime error
Runtime error
import gradio as gr | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoProcessor | |
import torch | |
from PIL import Image | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
models = { | |
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval() | |
} | |
processors = { | |
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True) | |
} | |
default_question = "You are an image to prompt converter. Your work is to observe each and every detail of the image and craft a detailed prompt under 100 words in this format: [image content/subject, description of action, state, and mood], [art form, style], [artist/photographer reference if needed], [additional settings such as camera and lens settings, lighting, colors, effects, texture, background, rendering]." | |
user_prompt = '<|user|>\n' | |
assistant_prompt = '<|assistant|>\n' | |
prompt_suffix = "<|end|>\n" | |
def run_example(image, text_input=default_question, model_id="microsoft/Phi-3.5-vision-instruct"): | |
model = models[model_id] | |
processor = processors[model_id] | |
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}" | |
image = Image.fromarray(image).convert("RGB") | |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") | |
generate_ids = model.generate(**inputs, | |
max_new_tokens=1000, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
) | |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] | |
response = processor.batch_decode(generate_ids, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=False)[0] | |
return response | |
css = """ | |
#container { | |
border: 2px solid #333; | |
padding: 20px; | |
max-width: 400px; | |
margin: auto; | |
} | |
#input_img, #output_text { | |
border: 1px solid #444; | |
border-radius: 5px; | |
} | |
#input_img { | |
height: 200px; | |
overflow: hidden; | |
} | |
#output_text { | |
height: 150px; | |
overflow-y: auto; | |
} | |
.copy-btn { | |
display: inline-block; | |
padding: 5px 10px; | |
font-size: 14px; | |
background-color: #333; | |
color: #fff; | |
border: none; | |
border-radius: 3px; | |
cursor: pointer; | |
margin-top: 10px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Box(elem_id="container"): | |
input_img = gr.Image(label="Input Picture", elem_id="input_img") | |
text_input = gr.Textbox(value=default_question, visible=False) | |
submit_btn = gr.Button(value="Generate") | |
output_text = gr.Textbox(label="Output Text", elem_id="output_text") | |
submit_btn.click(run_example, [input_img, text_input], [output_text]) | |
def copy_to_clipboard(content): | |
import pyperclip | |
pyperclip.copy(content) | |
return "Text copied!" | |
copy_button = gr.Button("Copy Text", elem_id="copy-btn") | |
copy_button.click(copy_to_clipboard, inputs=output_text, outputs=None) | |
demo.queue(api_open=False) | |
demo.launch(debug=True, show_api=False) | |