Spaces:
Running
Running
import streamlit as st | |
import base64 | |
import os | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
# Function to compress and resize the image before base64 encoding | |
def compress_and_resize_image(image, max_size=(1024, 1024), quality=85): | |
img = Image.open(image) | |
img.thumbnail(max_size) # Resize image while maintaining aspect ratio | |
with BytesIO() as byte_io: | |
img.save(byte_io, format="JPEG", quality=quality) # Save with reduced quality | |
byte_io.seek(0) | |
return byte_io | |
# Function to convert uploaded image to base64 | |
def convert_image_to_base64(image): | |
compressed_image = compress_and_resize_image(image) | |
image_bytes = compressed_image.read() | |
encoded_image = base64.b64encode(image_bytes).decode("utf-8") | |
return encoded_image | |
# Function to generate caption using Nebius API | |
def generate_caption(encoded_image): | |
API_URL = "https://api.studio.nebius.ai/v1/chat/completions" | |
API_KEY = os.environ.get("NEBIUS_API_KEY") | |
headers = { | |
"Authorization": f"Bearer {API_KEY}", | |
"Content-Type": "application/json" | |
} | |
payload = { | |
"model": "Qwen/Qwen2-VL-72B-Instruct", | |
"messages": [ | |
{ | |
"role": "system", | |
"content": """You are an image to prompt converter. Your work is to observe each and every detail of the image and craft a detailed prompt under 75 words in this format: [image content/subject, description of action, state, and mood], [art form, style], [artist/photographer reference if needed], [additional settings such as camera and lens settings, lighting, colors, effects, texture, background, rendering].""" | |
}, | |
{ | |
"role": "user", | |
"content": "Write a caption for this image" | |
}, | |
{ | |
"role": "user", | |
"content": f"data:image/png;base64,{encoded_image}" # This is where the image is passed as base64 directly | |
} | |
], | |
"temperature": 0 | |
} | |
# Send request to Nebius API | |
response = requests.post(API_URL, headers=headers, json=payload) | |
if response.status_code == 200: | |
result = response.json() | |
caption = result.get("choices", [{}])[0].get("message", {}).get("content", "No caption generated.") | |
return caption | |
else: | |
st.error(f"API Error {response.status_code}: {response.text}") | |
return None | |
# Streamlit app layout | |
def main(): | |
st.set_page_config(page_title="Image Caption Generator", layout="centered", initial_sidebar_state="collapsed") | |
st.title("🖼️ Image to Caption Generator") | |
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
if uploaded_file: | |
# Display the uploaded image | |
st.image(uploaded_file, caption="Uploaded Image", use_container_width=True) | |
if st.button("Generate Caption"): | |
# Convert the uploaded image to base64 | |
with st.spinner("Generating caption..."): | |
encoded_image = convert_image_to_base64(uploaded_file) | |
# Debugging: Ensure the encoded image is valid and not too large | |
st.write(f"Encoded image length: {len(encoded_image)} characters") | |
# Get the generated caption from the API | |
caption = generate_caption(encoded_image) | |
if caption: | |
st.subheader("Generated Caption:") | |
st.text_area("", caption, height=100, key="caption_area") | |
st.success("Caption generated successfully!") | |
if __name__ == "__main__": | |
main() | |