Im-prmpt / app.py
mrbeliever's picture
Update app.py
6e2e0c5 verified
raw
history blame
3.63 kB
import streamlit as st
import base64
import os
import requests
from PIL import Image
from io import BytesIO
# Function to compress and resize the image before base64 encoding
def compress_and_resize_image(image, max_size=(1024, 1024), quality=85):
img = Image.open(image)
img.thumbnail(max_size) # Resize image while maintaining aspect ratio
with BytesIO() as byte_io:
img.save(byte_io, format="JPEG", quality=quality) # Save with reduced quality
byte_io.seek(0)
return byte_io
# Function to convert uploaded image to base64
def convert_image_to_base64(image):
compressed_image = compress_and_resize_image(image)
image_bytes = compressed_image.read()
encoded_image = base64.b64encode(image_bytes).decode("utf-8")
return encoded_image
# Function to generate caption using Nebius API
def generate_caption(encoded_image):
API_URL = "https://api.studio.nebius.ai/v1/chat/completions"
API_KEY = os.environ.get("NEBIUS_API_KEY")
headers = {
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
}
payload = {
"model": "Qwen/Qwen2-VL-72B-Instruct",
"messages": [
{
"role": "system",
"content": """You are an image to prompt converter. Your work is to observe each and every detail of the image and craft a detailed prompt under 75 words in this format: [image content/subject, description of action, state, and mood], [art form, style], [artist/photographer reference if needed], [additional settings such as camera and lens settings, lighting, colors, effects, texture, background, rendering]."""
},
{
"role": "user",
"content": "Write a caption for this image"
},
{
"role": "user",
"content": f"data:image/png;base64,{encoded_image}" # This is where the image is passed as base64 directly
}
],
"temperature": 0
}
# Send request to Nebius API
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
caption = result.get("choices", [{}])[0].get("message", {}).get("content", "No caption generated.")
return caption
else:
st.error(f"API Error {response.status_code}: {response.text}")
return None
# Streamlit app layout
def main():
st.set_page_config(page_title="Image Caption Generator", layout="centered", initial_sidebar_state="collapsed")
st.title("🖼️ Image to Caption Generator")
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
if uploaded_file:
# Display the uploaded image
st.image(uploaded_file, caption="Uploaded Image", use_container_width=True)
if st.button("Generate Caption"):
# Convert the uploaded image to base64
with st.spinner("Generating caption..."):
encoded_image = convert_image_to_base64(uploaded_file)
# Debugging: Ensure the encoded image is valid and not too large
st.write(f"Encoded image length: {len(encoded_image)} characters")
# Get the generated caption from the API
caption = generate_caption(encoded_image)
if caption:
st.subheader("Generated Caption:")
st.text_area("", caption, height=100, key="caption_area")
st.success("Caption generated successfully!")
if __name__ == "__main__":
main()