Spaces:
Running
Running
File size: 3,790 Bytes
9a78687 d5a06f6 11f5df3 d5a06f6 a93e14b d5a06f6 a93e14b 7c56b7b d5a06f6 a93e14b 788e1b9 a93e14b 79ec99d a93e14b 79ec99d 7c56b7b a93e14b d5a06f6 a93e14b 788e1b9 a93e14b d5a06f6 a93e14b d5a06f6 a93e14b 7c56b7b a93e14b d5a06f6 a93e14b 7c56b7b d5a06f6 a93e14b d5a06f6 a93e14b d5a06f6 3dc8d07 d5a06f6 a93e14b d5a06f6 a93e14b d5a06f6 7c56b7b a93e14b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import streamlit as st
import requests
import base64
import os
# Function to convert image to base64
def convert_image_to_base64(image):
image_bytes = image.read()
encoded_image = base64.b64encode(image_bytes).decode("utf-8")
return encoded_image
# Function to generate a caption using Nebius API
def generate_caption(encoded_image):
API_URL = "https://api.studio.nebius.ai/v1/chat/completions"
API_KEY = os.environ.get("NEBIUS_API_KEY")
headers = {
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
}
payload = {
"model": "llava-hf/llava-1.5-7b-hf",
"messages": [
{
"role": "system",
"content": """You are an image to prompt converter. Your work is to observe each and every detail of the image and craft a detailed prompt under 75 words in this format: [image content/subject, description of action, state, and mood], [art form, style], [artist/photographer reference if needed], [additional settings such as camera and lens settings, lighting, colors, effects, texture, background, rendering]."""
},
{
"role": "user",
"content": "write a detailed caption for this image"
}
],
"image": {
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{encoded_image}"
}
},
"temperature": 0.7
}
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
caption = result.get("choices", [{}])[0].get("message", {}).get("content", "No caption generated.")
return caption
else:
st.error(f"API Error {response.status_code}: {response.text}")
return None
# Streamlit app
def main():
st.set_page_config(page_title="Image to Caption Converter", layout="centered", initial_sidebar_state="collapsed")
# Gradient background style
st.markdown("""
<style>
body {
background: linear-gradient(135deg, #1e3c72, #2a5298);
color: white;
font-family: 'Arial', sans-serif;
}
.uploaded-image {
max-width: 100%;
border: 2px solid #ffffff;
border-radius: 10px;
}
.copy-button {
background-color: #ff8800;
color: white;
border: none;
border-radius: 5px;
padding: 10px 15px;
cursor: pointer;
}
.copy-button:hover {
background-color: #cc6b00;
}
</style>
""", unsafe_allow_html=True)
st.title("🖼️ Image to Caption Converter")
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
if uploaded_file:
# Display the uploaded image
st.image(uploaded_file, caption="Uploaded Image", use_container_width=True)
# Convert image to base64 and get caption
if st.button("Generate Caption"):
with st.spinner("Generating caption..."):
encoded_image = convert_image_to_base64(uploaded_file)
caption = generate_caption(encoded_image)
if caption:
st.subheader("Generated Caption:")
st.text_area("", caption, height=100, key="caption_area")
# Copy button
if st.button("Copy to Clipboard"):
st.code(caption, language="text")
st.success("Caption copied to clipboard!")
if __name__ == "__main__":
main()
|