File size: 2,448 Bytes
7c56b7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import streamlit as st
import requests
import os
import json

# Set the Nebius API key
API_KEY = os.environ.get("NEBIUS_API_KEY")
API_URL = "https://api.studio.nebius.ai/v1/chat/completions"

# Streamlit app configuration
st.set_page_config(page_title="Image to Prompt Converter", layout="centered", page_icon="🖼️")
st.markdown("<style>body { background-color: #1E1E1E; color: #FFFFFF; }</style>", unsafe_allow_html=True)

# App title
st.title("Image to Prompt Converter")
st.markdown("Upload an image and generate a detailed prompt.")

# Image upload
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])

if uploaded_file is not None:
    # Display the uploaded image
    st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
    
    # Generate button
    if st.button("Generate Prompt"):
        # Prepare the API payload
        files = {"file": uploaded_file.getvalue()}
        headers = {"Authorization": f"Bearer {API_KEY}"}
        data = {
            "model": "llava-hf/llava-1.5-7b-hf",
            "messages": [
                {
                    "role": "system",
                    "content": """You are an image to prompt converter. Your work is to observe each and every detail of the image and craft a detailed prompt under 75 words in this format: [image content/subject, description of action, state, and mood], [art form, style], [artist/photographer reference if needed], [additional settings such as camera and lens settings, lighting, colors, effects, texture, background, rendering]."""
                }
            ],
            "temperature": 0
        }

        # Call the Nebius API
        response = requests.post(API_URL, headers=headers, data=json.dumps(data))
        
        if response.status_code == 200:
            # Extract the generated prompt
            result = response.json()
            generated_prompt = result.get("choices", [{}])[0].get("message", {}).get("content", "No prompt generated.")
            
            # Display the generated prompt
            st.subheader("Generated Prompt")
            st.text_area("", generated_prompt, height=200)
            
            # Copy button
            if st.button("Copy Prompt"):
                st.write("Prompt copied to clipboard!")
                st.write(generated_prompt)
        else:
            st.error(f"Failed to generate prompt: {response.status_code} - {response.text}")