transcribe / app.py
kostissz's picture
Update error message
458a299 unverified
raw
history blame
4.98 kB
import os
from pathlib import Path
from typing import Tuple
import gradio as gr
from transformers import pipeline, Pipeline
from huggingface_hub import repo_exists
from speech_to_text_finetune.config import LANGUAGES_NAME_TO_ID
is_hf_space = os.getenv("IS_HF_SPACE")
languages = LANGUAGES_NAME_TO_ID.keys()
model_ids = [
"",
"openai/whisper-tiny",
"openai/whisper-small",
"openai/whisper-medium",
"openai/whisper-large-v3",
"openai/whisper-large-v3-turbo",
]
def _load_local_model(model_dir: str, language: str) -> Tuple[Pipeline | None, str]:
if not Path(model_dir).is_dir():
return None, f"⚠️ Couldn't find local model directory: {model_dir}"
from transformers import (
WhisperProcessor,
WhisperTokenizer,
WhisperFeatureExtractor,
WhisperForConditionalGeneration,
)
processor = WhisperProcessor.from_pretrained(model_dir)
tokenizer = WhisperTokenizer.from_pretrained(
model_dir, language=language, task="transcribe"
)
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_dir)
model = WhisperForConditionalGeneration.from_pretrained(model_dir)
return pipeline(
task="automatic-speech-recognition",
model=model,
processor=processor,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
), f"✅ Local model has been loaded from {model_dir}."
def _load_hf_model(model_repo_id: str, language: str) -> Tuple[Pipeline | None, str]:
if not repo_exists(model_repo_id):
return (
None,
f"⚠️ Couldn't find {model_repo_id} on Hugging Face. If its a private repo, make sure you are logged in locally.",
)
return pipeline(
"automatic-speech-recognition",
model=model_repo_id,
generate_kwargs={"language": language},
), f"✅ HF Model {model_repo_id} has been loaded."
def load_model(
language: str, dropdown_model_id: str, hf_model_id: str, local_model_id: str
) -> Tuple[Pipeline, str]:
if dropdown_model_id and not hf_model_id and not local_model_id:
yield None, f"Loading {dropdown_model_id}..."
yield _load_hf_model(dropdown_model_id, language)
elif hf_model_id and not local_model_id and not dropdown_model_id:
yield None, f"Loading {hf_model_id}..."
yield _load_hf_model(hf_model_id, language)
elif local_model_id and not hf_model_id and not dropdown_model_id:
yield None, f"Loading {local_model_id}..."
yield _load_local_model(local_model_id, language)
else:
yield (
None,
"️️⚠️ Please select or fill at least and only one of the options above",
)
if not language:
yield None, "⚠️ Please select a language from the dropdown"
def transcribe(pipe: Pipeline, audio: gr.Audio) -> str:
text = pipe(audio)["text"]
return text
def setup_gradio_demo():
with gr.Blocks() as demo:
gr.Markdown(
""" # 🗣️ Speech-to-Text Transcription
### 1. Select a language from the dropdown menu.
### 2. Select which model to load from one of the options below.
### 3. Load the model by clicking the Load model button.
### 4. Record a message and click Transcribe to see the transcription.
"""
)
### Language & Model selection ###
selected_lang = gr.Dropdown(
choices=list(languages), value=None, label="Select a language"
)
with gr.Row():
with gr.Column():
dropdown_model = gr.Dropdown(
choices=model_ids, label="Option 1: Select a model"
)
with gr.Column():
user_model = gr.Textbox(
label="Option 2: Paste HF model id",
placeholder="my-username/my-whisper-tiny",
)
with gr.Column(visible=not is_hf_space):
local_model = gr.Textbox(
label="Option 3: Paste local path to model directory",
placeholder="artifacts/my-whisper-tiny",
)
load_model_button = gr.Button("Load model")
model_loaded = gr.Markdown()
### Transcription ###
audio_input = gr.Audio(
sources=["microphone"], type="filepath", label="Record a message"
)
transcribe_button = gr.Button("Transcribe")
transcribe_output = gr.Text(label="Output")
### Event listeners ###
model = gr.State()
load_model_button.click(
fn=load_model,
inputs=[selected_lang, dropdown_model, user_model, local_model],
outputs=[model, model_loaded],
)
transcribe_button.click(
fn=transcribe, inputs=[model, audio_input], outputs=transcribe_output
)
demo.launch()
if __name__ == "__main__":
setup_gradio_demo()