Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import AutoTokenizer, AutoModel
|
| 5 |
+
import torch
|
| 6 |
+
from typing import Dict, List, Tuple
|
| 7 |
+
import plotly.express as px
|
| 8 |
+
from sklearn.decomposition import PCA
|
| 9 |
+
from sklearn.manifold import TSNE
|
| 10 |
+
import plotly.graph_objects as go
|
| 11 |
+
|
| 12 |
+
st.set_page_config(
|
| 13 |
+
page_title="Token & Embedding Visualizer",
|
| 14 |
+
layout="wide"
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
COLORS = {
|
| 18 |
+
'Special': '#FFB6C1',
|
| 19 |
+
'Subword': '#98FB98',
|
| 20 |
+
'Word': '#87CEFA',
|
| 21 |
+
'Punctuation': '#DDA0DD'
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
@st.cache_resource
|
| 25 |
+
def load_models_and_tokenizers() -> Tuple[Dict, Dict]:
|
| 26 |
+
"""Load tokenizers and models with error handling"""
|
| 27 |
+
model_names = {
|
| 28 |
+
"BERT": "bert-base-uncased",
|
| 29 |
+
"RoBERTa": "roberta-base",
|
| 30 |
+
"DistilBERT": "distilbert-base-uncased",
|
| 31 |
+
"MPNet": "microsoft/mpnet-base",
|
| 32 |
+
"DeBERTa": "microsoft/deberta-base",
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
tokenizers = {}
|
| 36 |
+
models = {}
|
| 37 |
+
|
| 38 |
+
for name, model_name in model_names.items():
|
| 39 |
+
try:
|
| 40 |
+
tokenizers[name] = AutoTokenizer.from_pretrained(model_name)
|
| 41 |
+
models[name] = AutoModel.from_pretrained(model_name)
|
| 42 |
+
st.success(f"β Loaded {name}")
|
| 43 |
+
except Exception as e:
|
| 44 |
+
st.warning(f"Γ Failed to load {name}: {str(e)}")
|
| 45 |
+
|
| 46 |
+
return tokenizers, models
|
| 47 |
+
|
| 48 |
+
def classify_token(token: str) -> str:
|
| 49 |
+
if token.startswith(('##', 'β', 'Δ ', '_', '.')):
|
| 50 |
+
return 'Subword'
|
| 51 |
+
elif token in ['[CLS]', '[SEP]', '<s>', '</s>', '<pad>', '[PAD]', '[MASK]', '<mask>']:
|
| 52 |
+
return 'Special'
|
| 53 |
+
elif token in [',', '.', '!', '?', ';', ':', '"', "'", '(', ')', '[', ']', '{', '}']:
|
| 54 |
+
return 'Punctuation'
|
| 55 |
+
else:
|
| 56 |
+
return 'Word'
|
| 57 |
+
|
| 58 |
+
@torch.no_grad()
|
| 59 |
+
def get_embeddings(text: str, model, tokenizer) -> Tuple[torch.Tensor, List[str]]:
|
| 60 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 61 |
+
outputs = model(**inputs)
|
| 62 |
+
embeddings = outputs.last_hidden_state[0] # Get first batch
|
| 63 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
|
| 64 |
+
return embeddings, tokens
|
| 65 |
+
|
| 66 |
+
def visualize_embeddings(embeddings: torch.Tensor, tokens: List[str], method: str = 'PCA') -> go.Figure:
|
| 67 |
+
embed_array = embeddings.numpy()
|
| 68 |
+
|
| 69 |
+
if method == 'PCA':
|
| 70 |
+
reducer = PCA(n_components=3)
|
| 71 |
+
reduced_embeddings = reducer.fit_transform(embed_array)
|
| 72 |
+
variance_explained = reducer.explained_variance_ratio_
|
| 73 |
+
method_info = f"Total variance explained: {sum(variance_explained):.2%}"
|
| 74 |
+
else: # t-SNE
|
| 75 |
+
reducer = TSNE(n_components=3, random_state=42, perplexity=min(30, len(tokens)-1))
|
| 76 |
+
reduced_embeddings = reducer.fit_transform(embed_array)
|
| 77 |
+
method_info = "t-SNE embedding (perplexity: {})".format(reducer.perplexity)
|
| 78 |
+
|
| 79 |
+
df = pd.DataFrame({
|
| 80 |
+
'x': reduced_embeddings[:, 0],
|
| 81 |
+
'y': reduced_embeddings[:, 1],
|
| 82 |
+
'z': reduced_embeddings[:, 2],
|
| 83 |
+
'token': tokens,
|
| 84 |
+
'type': [classify_token(t) for t in tokens]
|
| 85 |
+
})
|
| 86 |
+
|
| 87 |
+
fig = go.Figure()
|
| 88 |
+
|
| 89 |
+
for token_type in df['type'].unique():
|
| 90 |
+
mask = df['type'] == token_type
|
| 91 |
+
fig.add_trace(go.Scatter3d(
|
| 92 |
+
x=df[mask]['x'],
|
| 93 |
+
y=df[mask]['y'],
|
| 94 |
+
z=df[mask]['z'],
|
| 95 |
+
mode='markers+text',
|
| 96 |
+
name=token_type,
|
| 97 |
+
text=df[mask]['token'],
|
| 98 |
+
hovertemplate="Token: %{text}<br>Type: " + token_type + "<extra></extra>",
|
| 99 |
+
marker=dict(
|
| 100 |
+
size=8,
|
| 101 |
+
color=COLORS[token_type],
|
| 102 |
+
opacity=0.8
|
| 103 |
+
)
|
| 104 |
+
))
|
| 105 |
+
|
| 106 |
+
fig.update_layout(
|
| 107 |
+
title=f"{method} Visualization of Token Embeddings<br><sup>{method_info}</sup>",
|
| 108 |
+
scene=dict(
|
| 109 |
+
xaxis_title=f"{method}_1",
|
| 110 |
+
yaxis_title=f"{method}_2",
|
| 111 |
+
zaxis_title=f"{method}_3"
|
| 112 |
+
),
|
| 113 |
+
width=800,
|
| 114 |
+
height=800
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
return fig
|
| 118 |
+
|
| 119 |
+
def compute_token_similarities(embeddings: torch.Tensor, tokens: List[str]) -> pd.DataFrame:
|
| 120 |
+
normalized_embeddings = embeddings / embeddings.norm(dim=1, keepdim=True)
|
| 121 |
+
similarities = torch.mm(normalized_embeddings, normalized_embeddings.t())
|
| 122 |
+
|
| 123 |
+
sim_df = pd.DataFrame(similarities.numpy(), columns=tokens, index=tokens)
|
| 124 |
+
return sim_df
|
| 125 |
+
|
| 126 |
+
st.title("π€ Token & Embedding Visualizer")
|
| 127 |
+
|
| 128 |
+
# Load models and tokenizers
|
| 129 |
+
tokenizers, models = load_models_and_tokenizers()
|
| 130 |
+
|
| 131 |
+
token_tab, embedding_tab, similarity_tab = st.tabs([
|
| 132 |
+
"Token Visualization",
|
| 133 |
+
"Embedding Visualization",
|
| 134 |
+
"Token Similarities"
|
| 135 |
+
])
|
| 136 |
+
|
| 137 |
+
default_text = "Hello world! Let's analyze how neural networks process language. The transformer architecture revolutionized NLP."
|
| 138 |
+
text_input = st.text_area("Enter text to analyze:", value=default_text, height=100)
|
| 139 |
+
|
| 140 |
+
with token_tab:
|
| 141 |
+
st.markdown("""
|
| 142 |
+
Token colors represent:
|
| 143 |
+
- π¦ Blue: Complete words
|
| 144 |
+
- π© Green: Subwords
|
| 145 |
+
- π¨ Pink: Special tokens
|
| 146 |
+
- πͺ Purple: Punctuation
|
| 147 |
+
""")
|
| 148 |
+
|
| 149 |
+
selected_models = st.multiselect(
|
| 150 |
+
"Select models to compare tokens",
|
| 151 |
+
options=list(tokenizers.keys()),
|
| 152 |
+
default=["BERT", "RoBERTa"],
|
| 153 |
+
max_selections=4
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
if text_input and selected_models:
|
| 157 |
+
cols = st.columns(len(selected_models))
|
| 158 |
+
|
| 159 |
+
for idx, model_name in enumerate(selected_models):
|
| 160 |
+
with cols[idx]:
|
| 161 |
+
st.subheader(model_name)
|
| 162 |
+
tokenizer = tokenizers[model_name]
|
| 163 |
+
|
| 164 |
+
tokens = tokenizer.tokenize(text_input)
|
| 165 |
+
token_ids = tokenizer.encode(text_input)
|
| 166 |
+
|
| 167 |
+
if len(tokens) != len(token_ids):
|
| 168 |
+
tokens = tokenizer.convert_ids_to_tokens(token_ids)
|
| 169 |
+
|
| 170 |
+
st.metric("Tokens", len(tokens))
|
| 171 |
+
|
| 172 |
+
html_tokens = []
|
| 173 |
+
for token in tokens:
|
| 174 |
+
color = COLORS[classify_token(token)]
|
| 175 |
+
token_text = token.replace('<', '<').replace('>', '>')
|
| 176 |
+
html_tokens.append(
|
| 177 |
+
f'<span style="background-color: {color}; padding: 2px 4px; '
|
| 178 |
+
f'margin: 2px; border-radius: 3px; font-family: monospace;">'
|
| 179 |
+
f'{token_text}</span>'
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
st.markdown(
|
| 183 |
+
'<div style="background-color: white; padding: 10px; '
|
| 184 |
+
'border-radius: 5px; border: 1px solid #ddd;">'
|
| 185 |
+
f'{"".join(html_tokens)}</div>',
|
| 186 |
+
unsafe_allow_html=True
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
with embedding_tab:
|
| 190 |
+
st.markdown("""
|
| 191 |
+
This tab shows how tokens are embedded in the model's vector space.
|
| 192 |
+
- Compare different dimensionality reduction techniques
|
| 193 |
+
- Observe clustering of similar tokens
|
| 194 |
+
- Explore the relationship between different token types
|
| 195 |
+
""")
|
| 196 |
+
|
| 197 |
+
col1, col2 = st.columns([2, 1])
|
| 198 |
+
|
| 199 |
+
with col1:
|
| 200 |
+
selected_model = st.selectbox(
|
| 201 |
+
"Select model for embedding visualization",
|
| 202 |
+
options=list(models.keys())
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
with col2:
|
| 206 |
+
viz_method = st.radio(
|
| 207 |
+
"Select visualization method",
|
| 208 |
+
options=['PCA', 't-SNE'],
|
| 209 |
+
horizontal=True
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
if text_input and selected_model:
|
| 213 |
+
with st.spinner(f"Generating embeddings with {selected_model}..."):
|
| 214 |
+
embeddings, tokens = get_embeddings(
|
| 215 |
+
text_input,
|
| 216 |
+
models[selected_model],
|
| 217 |
+
tokenizers[selected_model]
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
fig = visualize_embeddings(embeddings, tokens, viz_method)
|
| 221 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 222 |
+
|
| 223 |
+
with st.expander("Embedding Statistics"):
|
| 224 |
+
embed_stats = pd.DataFrame({
|
| 225 |
+
'Token': tokens,
|
| 226 |
+
'Type': [classify_token(t) for t in tokens],
|
| 227 |
+
'Mean': embeddings.mean(dim=1).numpy(),
|
| 228 |
+
'Std': embeddings.std(dim=1).numpy(),
|
| 229 |
+
'Norm': torch.norm(embeddings, dim=1).numpy()
|
| 230 |
+
})
|
| 231 |
+
st.dataframe(embed_stats, use_container_width=True)
|
| 232 |
+
|
| 233 |
+
with similarity_tab:
|
| 234 |
+
st.markdown("""
|
| 235 |
+
Explore token similarities based on their embedding representations.
|
| 236 |
+
- Darker colors indicate higher similarity
|
| 237 |
+
- Hover over cells to see exact similarity scores
|
| 238 |
+
""")
|
| 239 |
+
|
| 240 |
+
if text_input and selected_model:
|
| 241 |
+
with st.spinner("Computing token similarities..."):
|
| 242 |
+
sim_df = compute_token_similarities(embeddings, tokens)
|
| 243 |
+
|
| 244 |
+
fig = px.imshow(
|
| 245 |
+
sim_df,
|
| 246 |
+
labels=dict(color="Cosine Similarity"),
|
| 247 |
+
color_continuous_scale="RdYlBu",
|
| 248 |
+
aspect="auto"
|
| 249 |
+
)
|
| 250 |
+
fig.update_layout(
|
| 251 |
+
title="Token Similarity Matrix",
|
| 252 |
+
width=800,
|
| 253 |
+
height=800
|
| 254 |
+
)
|
| 255 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 256 |
+
|
| 257 |
+
st.subheader("Most Similar Token Pairs")
|
| 258 |
+
sim_matrix = sim_df.values
|
| 259 |
+
np.fill_diagonal(sim_matrix, 0) # Exclude self-similarities
|
| 260 |
+
top_k = min(10, len(tokens))
|
| 261 |
+
|
| 262 |
+
pairs = []
|
| 263 |
+
for i in range(len(tokens)):
|
| 264 |
+
for j in range(i+1, len(tokens)):
|
| 265 |
+
pairs.append((tokens[i], tokens[j], sim_matrix[i, j]))
|
| 266 |
+
|
| 267 |
+
top_pairs = sorted(pairs, key=lambda x: x[2], reverse=True)[:top_k]
|
| 268 |
+
|
| 269 |
+
for token1, token2, sim in top_pairs:
|
| 270 |
+
st.write(f"'{token1}' β '{token2}': {sim:.3f}")
|
| 271 |
+
|
| 272 |
+
st.markdown("---")
|
| 273 |
+
st.markdown("""
|
| 274 |
+
π‘ **Tips:**
|
| 275 |
+
- Try comparing how different models tokenize and embed the same text
|
| 276 |
+
- Use PCA for global structure and t-SNE for local relationships
|
| 277 |
+
- Check the similarity matrix for interesting token relationships
|
| 278 |
+
- Experiment with different text types (technical, casual, mixed)
|
| 279 |
+
""")
|