Spaces:
Sleeping
Sleeping
from typing import Dict | |
import numpy as np | |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC | |
import torch | |
#define groups | |
#make sure that all phonemes covered in each group | |
g1 = ['p_alveolar','n_alveolar'] | |
g2 = ['p_palatal','n_palatal'] | |
g3 = ['p_dental','n_dental'] | |
g4 = ['p_glottal','n_glottal'] | |
g5 = ['p_labial','n_labial'] | |
g6 = ['p_velar','n_velar'] | |
g7 = ['p_anterior','n_anterior'] | |
g8 = ['p_posterior','n_posterior'] | |
g9 = ['p_retroflex','n_retroflex'] | |
g10 = ['p_mid','n_mid'] | |
g11 = ['p_high_v','n_high_v'] | |
g12 = ['p_low','n_low'] | |
g13 = ['p_front','n_front'] | |
g14 = ['p_back','n_back'] | |
g15 = ['p_central','n_central'] | |
g16 = ['p_consonant','n_consonant'] | |
g17 = ['p_sonorant','n_sonorant'] | |
g18 = ['p_long','n_long'] | |
g19 = ['p_short','n_short'] | |
g20 = ['p_vowel','n_vowel'] | |
g21 = ['p_semivowel','n_semivowel'] | |
g22 = ['p_fricative','n_fricative'] | |
g23 = ['p_nasal','n_nasal'] | |
g24 = ['p_stop','n_stop'] | |
g25 = ['p_approximant','n_approximant'] | |
g26 = ['p_affricate','n_affricate'] | |
g27 = ['p_liquid','n_liquid'] | |
g28 = ['p_continuant','n_continuant'] | |
g29 = ['p_monophthong','n_monophthong'] | |
g30 = ['p_diphthong','n_diphthong'] | |
g31 = ['p_round','n_round'] | |
g32 = ['p_voiced','n_voiced'] | |
g33 = ['p_bilabial','n_bilabial'] | |
g34 = ['p_coronal','n_coronal'] | |
g35 = ['p_dorsal','n_dorsal'] | |
groups = [g1,g2,g3,g4,g5,g6,g7,g8,g9,g10,g11,g12,g13,g14,g15,g16,g17,g18,g19,g20,g21,g22,g23,g24,g25,g26,g27,g28,g29,g30,g31,g32,g33,g34,g35] | |
class PreTrainedPipeline(): | |
def __init__(self, path=""): | |
# IMPLEMENT_THIS | |
# Preload all the elements you are going to need at inference. | |
# For instance your model, processors, tokenizer that might be needed. | |
# This function is only called once, so do all the heavy processing I/O here""" | |
self.sampling_rate = 16000 | |
self.processor = Wav2Vec2Processor.from_pretrained('.') | |
self.model = Wav2Vec2ForCTC.from_pretrained('.') | |
self.group_ids = [sorted(self.processor.tokenizer.convert_tokens_to_ids(group)) for group in groups] | |
self.group_ids = [dict([(x[0]+1,x[1]) for x in list(enumerate(g))]) for g in self.group_ids] #This is the inversion of the one used in training as here we need to map prediction back to original tokens | |
def __call__(self, inputs: np.array)-> Dict[str, str]: | |
""" | |
Args: | |
inputs (:obj:`np.array`): | |
The raw waveform of audio received. By default at 16KHz. | |
Return: | |
A :obj:`dict`:. The object return should be liked {"text": "XXX"} containing | |
the detected text from the input audio. | |
""" | |
# IMPLEMENT_THIS | |
input_values = self.processor(audio=inputs, sampling_rate=self.sampling_rate, return_tensors="pt").input_values | |
if torch.cuda.is_available(): | |
self.model.to("cuda") | |
input_values = input_values.to("cuda") | |
with torch.no_grad(): | |
logits = self.model(input_values).logits | |
mask = torch.zeros(logits.size()[2], dtype = torch.bool) | |
mask[0] = True | |
mask[list(self.group_ids[31].values())] = True | |
logits_g = logits[:,:,mask] | |
pred_ids = torch.argmax(logits_g,dim=-1) | |
pred_ids = pred_ids.cpu().apply_(lambda x: self.group_ids[31].get(x,x)) | |
pred = self.processor.batch_decode(pred_ids,spaces_between_special_tokens=True)[0] | |
pred = pred.replace('p_','+').replace('n_', '-') | |
return({"text":pred}) | |