Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,33 @@
|
|
1 |
-
|
|
|
2 |
|
3 |
-
#
|
4 |
-
|
5 |
-
|
6 |
-
model = TFAutoModel.from_pretrained("HooshvareLab/bert-fa-zwnj-base")
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
# عبور دادهها از مدل
|
19 |
-
outputs = model(**inputs)
|
20 |
-
|
21 |
-
# استخراج بردارهای embedding
|
22 |
-
embeddings = outputs.last_hidden_state
|
23 |
-
|
24 |
-
# نمایش اطلاعات
|
25 |
-
print("Shape of embeddings:", embeddings.shape)
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModel
|
3 |
|
4 |
+
# Load the tokenizer and model for Persian
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/bert-fa-base-uncased")
|
6 |
+
model = AutoModel.from_pretrained("HooshvareLab/bert-fa-base-uncased")
|
|
|
7 |
|
8 |
+
def get_embedding(text):
|
9 |
+
# Tokenize the input text
|
10 |
+
tokens = tokenizer.tokenize(text)
|
11 |
+
|
12 |
+
# Encode the input text to get embeddings
|
13 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
14 |
+
outputs = model(**inputs)
|
15 |
+
|
16 |
+
# Extract the [CLS] token embedding (first token in output)
|
17 |
+
cls_embedding = outputs.last_hidden_state[:, 0, :].detach().numpy().tolist()
|
18 |
+
|
19 |
+
# Return embeddings and tokenized text
|
20 |
+
return {"embedding": cls_embedding, "tokens": tokens}
|
21 |
|
22 |
+
# Create Gradio interface
|
23 |
+
iface = gr.Interface(
|
24 |
+
fn=get_embedding,
|
25 |
+
inputs=gr.Textbox(lines=2, placeholder="متن خود را وارد کنید..."),
|
26 |
+
outputs="json",
|
27 |
+
title="مدل فارسی با Transformers",
|
28 |
+
description="متن فارسی را وارد کنید تا توکنها و بردار embedding آن را دریافت کنید."
|
29 |
+
)
|
30 |
|
31 |
+
# Launch app
|
32 |
+
if __name__ == "__main__":
|
33 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|