Spaces:
Sleeping
Sleeping
Moshe Ofer
commited on
Commit
·
a1b31ed
1
Parent(s):
2e30eb9
Initial commit for Hugging Face Space
Browse files- Dockerfile +23 -0
- app.py +113 -0
- requirements.txt +7 -0
- temp.py +175 -0
- templates/index.html +530 -0
Dockerfile
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use a lightweight Python base image
|
2 |
+
FROM python:3.9-slim
|
3 |
+
|
4 |
+
# Set the working directory in the container
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Install system dependencies required for the application
|
8 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
9 |
+
build-essential && \
|
10 |
+
rm -rf /var/lib/apt/lists/*
|
11 |
+
|
12 |
+
# Copy the application files into the container
|
13 |
+
COPY . /app
|
14 |
+
|
15 |
+
# Install Python dependencies
|
16 |
+
RUN pip install --no-cache-dir --upgrade pip
|
17 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
18 |
+
|
19 |
+
# Expose the application port
|
20 |
+
EXPOSE 7860
|
21 |
+
|
22 |
+
# Command to run the application using Gunicorn with Eventlet
|
23 |
+
CMD ["gunicorn", "--worker-class", "eventlet", "-w", "1", "app:app", "-b", "0.0.0.0:7860"]
|
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, render_template
|
2 |
+
from flask_socketio import SocketIO
|
3 |
+
from transformers import MultiBeamTextStreamer, AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import torch
|
5 |
+
import time
|
6 |
+
import eventlet
|
7 |
+
|
8 |
+
eventlet.monkey_patch()
|
9 |
+
app = Flask(__name__)
|
10 |
+
socketio = SocketIO(app, ping_timeout=60)
|
11 |
+
|
12 |
+
# Initialize model and tokenizer
|
13 |
+
MODEL_NAME = "Qwen/Qwen2.5-0.5B-Instruct"
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
MODEL_NAME,
|
17 |
+
torch_dtype="auto",
|
18 |
+
device_map="auto"
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
class WebSocketBeamStreamer(MultiBeamTextStreamer):
|
23 |
+
"""Custom streamer that sends updates through websockets with adjustable speed"""
|
24 |
+
|
25 |
+
def __init__(self, tokenizer, num_beams, sleep_time=0, skip_prompt=True):
|
26 |
+
super().__init__(
|
27 |
+
tokenizer,
|
28 |
+
num_beams=num_beams,
|
29 |
+
skip_prompt=skip_prompt,
|
30 |
+
on_beam_update=self.on_beam_update,
|
31 |
+
on_beam_finished=self.on_beam_finished
|
32 |
+
)
|
33 |
+
self.beam_texts = {i: "" for i in range(num_beams)}
|
34 |
+
self.sleep_time = sleep_time # Sleep time in milliseconds
|
35 |
+
|
36 |
+
def on_beam_update(self, beam_idx: int, new_text: str):
|
37 |
+
"""Send beam updates through websocket with delay"""
|
38 |
+
self.beam_texts[beam_idx] = new_text
|
39 |
+
if self.sleep_time > 0:
|
40 |
+
time.sleep(self.sleep_time / 1000) # Convert milliseconds to seconds
|
41 |
+
socketio.emit('beam_update', {
|
42 |
+
'beam_idx': beam_idx,
|
43 |
+
'text': new_text
|
44 |
+
})
|
45 |
+
|
46 |
+
def on_beam_finished(self, final_text: str):
|
47 |
+
"""Send completion notification through websocket"""
|
48 |
+
socketio.emit('beam_finished', {
|
49 |
+
'text': final_text
|
50 |
+
})
|
51 |
+
|
52 |
+
|
53 |
+
@app.route('/')
|
54 |
+
def index():
|
55 |
+
return render_template('index.html')
|
56 |
+
|
57 |
+
|
58 |
+
@socketio.on('generate')
|
59 |
+
def handle_generation(data):
|
60 |
+
# Emit a generation start event
|
61 |
+
socketio.emit('generation_started')
|
62 |
+
|
63 |
+
prompt = data['prompt']
|
64 |
+
num_beams = data.get('num_beams', 5)
|
65 |
+
max_new_tokens = data.get('max_tokens', 512)
|
66 |
+
sleep_time = data.get('sleep_time', 0) # Get sleep time from frontend
|
67 |
+
|
68 |
+
# Create messages format
|
69 |
+
messages = [
|
70 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
71 |
+
{"role": "user", "content": prompt}
|
72 |
+
]
|
73 |
+
|
74 |
+
# Apply chat template
|
75 |
+
text = tokenizer.apply_chat_template(
|
76 |
+
messages,
|
77 |
+
tokenize=False,
|
78 |
+
add_generation_prompt=True
|
79 |
+
)
|
80 |
+
|
81 |
+
# Prepare inputs
|
82 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
83 |
+
|
84 |
+
# Initialize streamer with sleep time
|
85 |
+
streamer = WebSocketBeamStreamer(
|
86 |
+
tokenizer=tokenizer,
|
87 |
+
num_beams=num_beams,
|
88 |
+
sleep_time=sleep_time,
|
89 |
+
skip_prompt=True
|
90 |
+
)
|
91 |
+
|
92 |
+
try:
|
93 |
+
# Generate with beam search
|
94 |
+
with torch.no_grad():
|
95 |
+
model.generate(
|
96 |
+
**model_inputs,
|
97 |
+
num_beams=num_beams,
|
98 |
+
num_return_sequences=num_beams,
|
99 |
+
max_new_tokens=max_new_tokens,
|
100 |
+
output_scores=True,
|
101 |
+
return_dict_in_generate=True,
|
102 |
+
early_stopping=True,
|
103 |
+
streamer=streamer
|
104 |
+
)
|
105 |
+
except Exception as e:
|
106 |
+
socketio.emit('generation_error', {'error': str(e)})
|
107 |
+
finally:
|
108 |
+
# Emit generation completed event
|
109 |
+
socketio.emit('generation_completed')
|
110 |
+
|
111 |
+
|
112 |
+
if __name__ == '__main__':
|
113 |
+
socketio.run(app, host='0.0.0.0', port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
eventlet
|
3 |
+
Flask
|
4 |
+
Flask-SocketIO
|
5 |
+
accelerate
|
6 |
+
gunicorn
|
7 |
+
git+https://github.com/MosheOfer1/transformers.git
|
temp.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
|
4 |
+
from transformers import MultiBeamTextStreamer, AutoTokenizer, AutoModelForCausalLM
|
5 |
+
|
6 |
+
|
7 |
+
class BeamOutputManager:
|
8 |
+
"""Manages file handlers for beam outputs"""
|
9 |
+
|
10 |
+
def __init__(self, output_dir: str, num_beams: int):
|
11 |
+
self.output_dir = output_dir
|
12 |
+
self.num_beams = num_beams
|
13 |
+
self.counter = 0
|
14 |
+
|
15 |
+
# Create main output directory and closed beams directory
|
16 |
+
os.makedirs(output_dir, exist_ok=True)
|
17 |
+
self.closed_beams_dir = os.path.join(output_dir, "closed_beams")
|
18 |
+
os.makedirs(self.closed_beams_dir, exist_ok=True)
|
19 |
+
|
20 |
+
# Store complete text for each beam
|
21 |
+
self.beam_texts = {i: "" for i in range(num_beams)}
|
22 |
+
self.active_beams = set(range(num_beams))
|
23 |
+
|
24 |
+
# Initialize empty files
|
25 |
+
for beam_idx in range(num_beams):
|
26 |
+
filename = os.path.join(output_dir, f'beam_{beam_idx}.txt')
|
27 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
28 |
+
f.write('')
|
29 |
+
|
30 |
+
def write_to_beam(self, beam_idx: int, text: str):
|
31 |
+
"""Write text to the specified beam's file"""
|
32 |
+
if 0 <= beam_idx < self.num_beams and beam_idx in self.active_beams:
|
33 |
+
# Update stored text
|
34 |
+
self.beam_texts[beam_idx] = text
|
35 |
+
|
36 |
+
# Write complete text to file
|
37 |
+
filename = os.path.join(self.output_dir, f'beam_{beam_idx}.txt')
|
38 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
39 |
+
f.write(self.beam_texts[beam_idx])
|
40 |
+
|
41 |
+
def finalize_beam(self, final_text: str):
|
42 |
+
"""
|
43 |
+
Handle a completed beam by creating a new file in the closed_beams directory.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
final_text (str): The complete text generated by the finished beam
|
47 |
+
"""
|
48 |
+
# Create a timestamp-based filename to ensure uniqueness
|
49 |
+
self.counter += 1
|
50 |
+
filename = os.path.join(self.closed_beams_dir, f'completed_beam_{self.counter}.txt')
|
51 |
+
|
52 |
+
# Write the final text to the completed beam file
|
53 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
54 |
+
f.write(final_text)
|
55 |
+
|
56 |
+
return filename
|
57 |
+
|
58 |
+
|
59 |
+
def setup_model_and_tokenizer(model_name):
|
60 |
+
"""
|
61 |
+
Initialize the model and tokenizer.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
model_name (str): Name of the model to use
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
tuple: (model, tokenizer)
|
68 |
+
"""
|
69 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
70 |
+
model = AutoModelForCausalLM.from_pretrained(
|
71 |
+
model_name,
|
72 |
+
torch_dtype="auto",
|
73 |
+
device_map="auto"
|
74 |
+
)
|
75 |
+
return model, tokenizer
|
76 |
+
|
77 |
+
|
78 |
+
def generate_with_beam_search(model, tokenizer, user_prompt, output_dir, num_beams=5, max_new_tokens=512):
|
79 |
+
"""
|
80 |
+
Generate responses using beam search and write results to files.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
model: The language model
|
84 |
+
tokenizer: The tokenizer
|
85 |
+
user_prompt (str): Input prompt
|
86 |
+
output_dir (str): Directory to save beam outputs
|
87 |
+
num_beams (int): Number of beams to use
|
88 |
+
max_new_tokens (int): Maximum number of new tokens to generate
|
89 |
+
"""
|
90 |
+
# Initialize the output manager
|
91 |
+
output_manager = BeamOutputManager(output_dir, num_beams)
|
92 |
+
|
93 |
+
def on_beam_update(beam_idx: int, new_text: str):
|
94 |
+
"""Handler for beam updates - write new text to file"""
|
95 |
+
output_manager.write_to_beam(beam_idx, new_text)
|
96 |
+
|
97 |
+
def on_beam_finished(final_text: str):
|
98 |
+
"""Handler for completed beams - create final output file"""
|
99 |
+
final_path = output_manager.finalize_beam(final_text)
|
100 |
+
print(f"\nCompleted beam saved to: {final_path}")
|
101 |
+
|
102 |
+
# Create messages format
|
103 |
+
messages = [
|
104 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
105 |
+
{"role": "user", "content": user_prompt}
|
106 |
+
]
|
107 |
+
|
108 |
+
# Apply chat template
|
109 |
+
text = tokenizer.apply_chat_template(
|
110 |
+
messages,
|
111 |
+
tokenize=False,
|
112 |
+
add_generation_prompt=True
|
113 |
+
)
|
114 |
+
|
115 |
+
# Prepare inputs
|
116 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
117 |
+
|
118 |
+
# Initialize streamer with handlers
|
119 |
+
streamer = MultiBeamTextStreamer(
|
120 |
+
tokenizer=tokenizer,
|
121 |
+
num_beams=num_beams,
|
122 |
+
on_beam_update=on_beam_update,
|
123 |
+
on_beam_finished=on_beam_finished,
|
124 |
+
skip_prompt=True
|
125 |
+
)
|
126 |
+
|
127 |
+
# Generate with beam search
|
128 |
+
model.generate(
|
129 |
+
**model_inputs,
|
130 |
+
num_beams=num_beams,
|
131 |
+
num_return_sequences=num_beams,
|
132 |
+
max_new_tokens=max_new_tokens,
|
133 |
+
output_scores=True,
|
134 |
+
return_dict_in_generate=True,
|
135 |
+
early_stopping=True,
|
136 |
+
streamer=streamer
|
137 |
+
)
|
138 |
+
|
139 |
+
|
140 |
+
def main():
|
141 |
+
# Setup command line arguments
|
142 |
+
parser = argparse.ArgumentParser(description='Language Model Text Generation with Beam Search')
|
143 |
+
parser.add_argument('--model', type=str, default='Qwen/Qwen2.5-0.5B-Instruct',
|
144 |
+
help='Name of the model to use')
|
145 |
+
parser.add_argument('--num_beams', type=int, default=5,
|
146 |
+
help='Number of beams for beam search')
|
147 |
+
parser.add_argument('--max_tokens', type=int, default=512,
|
148 |
+
help='Maximum number of new tokens to generate')
|
149 |
+
parser.add_argument('--output_dir', type=str, default='beam_outputs',
|
150 |
+
help='Directory to save beam outputs')
|
151 |
+
|
152 |
+
args = parser.parse_args()
|
153 |
+
|
154 |
+
# Initialize model and tokenizer
|
155 |
+
model, tokenizer = setup_model_and_tokenizer(args.model)
|
156 |
+
|
157 |
+
# Interactive loop
|
158 |
+
while True:
|
159 |
+
prompt = input("\nEnter your prompt (or 'quit' to exit): ")
|
160 |
+
if prompt.lower() == 'quit':
|
161 |
+
break
|
162 |
+
|
163 |
+
generate_with_beam_search(
|
164 |
+
model,
|
165 |
+
tokenizer,
|
166 |
+
prompt,
|
167 |
+
args.output_dir,
|
168 |
+
num_beams=args.num_beams,
|
169 |
+
max_new_tokens=args.max_tokens
|
170 |
+
)
|
171 |
+
print(f"\nOutputs written to: {args.output_dir}/beam_*.txt")
|
172 |
+
|
173 |
+
|
174 |
+
if __name__ == "__main__":
|
175 |
+
main()
|
templates/index.html
ADDED
@@ -0,0 +1,530 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html>
|
3 |
+
<head>
|
4 |
+
<title>Beam Search Generation</title>
|
5 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/socket.io/4.0.1/socket.io.js"></script>
|
6 |
+
<link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css" rel="stylesheet">
|
7 |
+
<style>
|
8 |
+
:root {
|
9 |
+
--primary-color: #4F46E5;
|
10 |
+
--secondary-color: #818CF8;
|
11 |
+
--background-color: #F3F4F6;
|
12 |
+
--card-background: #FFFFFF;
|
13 |
+
--text-primary: #111827;
|
14 |
+
--text-secondary: #4B5563;
|
15 |
+
--accent-color: #3730A3;
|
16 |
+
--success-color: #059669;
|
17 |
+
--border-radius: 12px;
|
18 |
+
}
|
19 |
+
|
20 |
+
* {
|
21 |
+
margin: 0;
|
22 |
+
padding: 0;
|
23 |
+
box-sizing: border-box;
|
24 |
+
font-family: 'Segoe UI', system-ui, -apple-system, sans-serif;
|
25 |
+
}
|
26 |
+
|
27 |
+
body {
|
28 |
+
background-color: var(--background-color);
|
29 |
+
color: var(--text-primary);
|
30 |
+
line-height: 1.5;
|
31 |
+
min-height: 100vh;
|
32 |
+
}
|
33 |
+
|
34 |
+
.header {
|
35 |
+
background: var(--card-background);
|
36 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
37 |
+
margin-bottom: 1rem;
|
38 |
+
}
|
39 |
+
|
40 |
+
h1 {
|
41 |
+
font-size: 2rem;
|
42 |
+
font-weight: 700;
|
43 |
+
color: var(--accent-color);
|
44 |
+
text-align: center;
|
45 |
+
text-shadow: 0 1px 2px rgba(0,0,0,0.1);
|
46 |
+
padding: 1.5rem;
|
47 |
+
margin: 0;
|
48 |
+
}
|
49 |
+
|
50 |
+
.input-section {
|
51 |
+
background: var(--card-background);
|
52 |
+
padding: 1.5rem 2rem;
|
53 |
+
border-bottom: 1px solid #E5E7EB;
|
54 |
+
}
|
55 |
+
|
56 |
+
textarea {
|
57 |
+
width: 100%;
|
58 |
+
padding: 1rem;
|
59 |
+
border: 2px solid #E5E7EB;
|
60 |
+
border-radius: var(--border-radius);
|
61 |
+
font-size: 1rem;
|
62 |
+
transition: border-color 0.3s ease;
|
63 |
+
resize: vertical;
|
64 |
+
margin-bottom: 1rem;
|
65 |
+
}
|
66 |
+
|
67 |
+
textarea:focus {
|
68 |
+
outline: none;
|
69 |
+
border-color: var(--primary-color);
|
70 |
+
box-shadow: 0 0 0 3px rgba(79, 70, 229, 0.1);
|
71 |
+
}
|
72 |
+
|
73 |
+
.controls {
|
74 |
+
display: grid;
|
75 |
+
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
76 |
+
gap: 1rem;
|
77 |
+
margin-bottom: 1rem;
|
78 |
+
}
|
79 |
+
|
80 |
+
.input-group {
|
81 |
+
display: flex;
|
82 |
+
flex-direction: column;
|
83 |
+
}
|
84 |
+
|
85 |
+
label {
|
86 |
+
font-weight: 600;
|
87 |
+
margin-bottom: 0.5rem;
|
88 |
+
color: var(--text-secondary);
|
89 |
+
}
|
90 |
+
|
91 |
+
input[type="number"] {
|
92 |
+
padding: 0.75rem;
|
93 |
+
border: 2px solid #E5E7EB;
|
94 |
+
border-radius: var(--border-radius);
|
95 |
+
font-size: 1rem;
|
96 |
+
transition: all 0.3s ease;
|
97 |
+
}
|
98 |
+
|
99 |
+
input[type="number"]:focus {
|
100 |
+
outline: none;
|
101 |
+
border-color: var(--primary-color);
|
102 |
+
box-shadow: 0 0 0 3px rgba(79, 70, 229, 0.1);
|
103 |
+
}
|
104 |
+
|
105 |
+
.slider-container {
|
106 |
+
margin: 1rem 0;
|
107 |
+
padding: 1rem;
|
108 |
+
background: var(--background-color);
|
109 |
+
border-radius: var(--border-radius);
|
110 |
+
}
|
111 |
+
|
112 |
+
.slider-group {
|
113 |
+
display: flex;
|
114 |
+
align-items: center;
|
115 |
+
gap: 1rem;
|
116 |
+
margin-top: 0.5rem;
|
117 |
+
}
|
118 |
+
|
119 |
+
input[type="range"] {
|
120 |
+
flex: 1;
|
121 |
+
height: 8px;
|
122 |
+
-webkit-appearance: none;
|
123 |
+
background: #E5E7EB;
|
124 |
+
border-radius: 4px;
|
125 |
+
outline: none;
|
126 |
+
transition: all 0.3s ease;
|
127 |
+
}
|
128 |
+
|
129 |
+
input[type="range"]::-webkit-slider-thumb {
|
130 |
+
-webkit-appearance: none;
|
131 |
+
width: 20px;
|
132 |
+
height: 20px;
|
133 |
+
background: var(--primary-color);
|
134 |
+
border-radius: 50%;
|
135 |
+
cursor: pointer;
|
136 |
+
transition: all 0.3s ease;
|
137 |
+
}
|
138 |
+
|
139 |
+
input[type="range"]::-webkit-slider-thumb:hover {
|
140 |
+
background: var(--accent-color);
|
141 |
+
transform: scale(1.1);
|
142 |
+
}
|
143 |
+
|
144 |
+
.slider-value {
|
145 |
+
min-width: 100px;
|
146 |
+
padding: 0.5rem 1rem;
|
147 |
+
background: var(--primary-color);
|
148 |
+
color: white;
|
149 |
+
border-radius: var(--border-radius);
|
150 |
+
text-align: center;
|
151 |
+
font-weight: 600;
|
152 |
+
font-size: 0.9rem;
|
153 |
+
}
|
154 |
+
|
155 |
+
#generate-btn {
|
156 |
+
background-color: var(--primary-color);
|
157 |
+
color: white;
|
158 |
+
border: none;
|
159 |
+
padding: 1rem 2rem;
|
160 |
+
border-radius: var(--border-radius);
|
161 |
+
font-weight: 600;
|
162 |
+
cursor: pointer;
|
163 |
+
transition: all 0.3s ease;
|
164 |
+
display: flex;
|
165 |
+
align-items: center;
|
166 |
+
justify-content: center;
|
167 |
+
gap: 0.5rem;
|
168 |
+
width: 100%;
|
169 |
+
margin-top: 1rem;
|
170 |
+
}
|
171 |
+
|
172 |
+
#generate-btn:hover {
|
173 |
+
background-color: var(--accent-color);
|
174 |
+
transform: translateY(-1px);
|
175 |
+
}
|
176 |
+
|
177 |
+
#generate-btn:disabled {
|
178 |
+
background-color: #D1D5DB;
|
179 |
+
cursor: not-allowed;
|
180 |
+
transform: none;
|
181 |
+
}
|
182 |
+
|
183 |
+
.loading {
|
184 |
+
display: none;
|
185 |
+
text-align: center;
|
186 |
+
color: var(--text-secondary);
|
187 |
+
font-weight: 600;
|
188 |
+
padding: 0.5rem;
|
189 |
+
}
|
190 |
+
|
191 |
+
.container {
|
192 |
+
padding: 0 2rem;
|
193 |
+
}
|
194 |
+
|
195 |
+
.split-container {
|
196 |
+
display: flex;
|
197 |
+
gap: 2rem;
|
198 |
+
padding-bottom: 2rem;
|
199 |
+
}
|
200 |
+
|
201 |
+
.left-panel, .right-panel {
|
202 |
+
flex: 1;
|
203 |
+
background: var(--card-background);
|
204 |
+
border-radius: var(--border-radius);
|
205 |
+
padding: 1.5rem;
|
206 |
+
min-height: 300px;
|
207 |
+
}
|
208 |
+
|
209 |
+
.panel-title {
|
210 |
+
font-size: 1.25rem;
|
211 |
+
color: var(--accent-color);
|
212 |
+
margin-bottom: 1rem;
|
213 |
+
padding-bottom: 0.5rem;
|
214 |
+
border-bottom: 2px solid var(--secondary-color);
|
215 |
+
}
|
216 |
+
|
217 |
+
.beam-container {
|
218 |
+
background: var(--background-color);
|
219 |
+
margin-bottom: 1rem;
|
220 |
+
padding: 1.5rem;
|
221 |
+
border-radius: var(--border-radius);
|
222 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
|
223 |
+
transition: transform 0.3s ease;
|
224 |
+
}
|
225 |
+
|
226 |
+
.beam-container:hover {
|
227 |
+
transform: translateY(-2px);
|
228 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
229 |
+
}
|
230 |
+
|
231 |
+
.beam-container h3, .beam-container h4 {
|
232 |
+
color: var(--accent-color);
|
233 |
+
margin-bottom: 1rem;
|
234 |
+
font-weight: 600;
|
235 |
+
}
|
236 |
+
|
237 |
+
.beam-text {
|
238 |
+
white-space: pre-wrap;
|
239 |
+
font-family: 'Cascadia Code', 'Source Code Pro', monospace;
|
240 |
+
line-height: 1.6;
|
241 |
+
color: var(--text-secondary);
|
242 |
+
background: var(--card-background);
|
243 |
+
padding: 1rem;
|
244 |
+
border-radius: calc(var(--border-radius) - 4px);
|
245 |
+
}
|
246 |
+
|
247 |
+
@media (max-width: 768px) {
|
248 |
+
.container {
|
249 |
+
padding: 0 1rem;
|
250 |
+
}
|
251 |
+
|
252 |
+
.split-container {
|
253 |
+
flex-direction: column;
|
254 |
+
gap: 1rem;
|
255 |
+
}
|
256 |
+
|
257 |
+
.controls {
|
258 |
+
grid-template-columns: 1fr;
|
259 |
+
}
|
260 |
+
|
261 |
+
.header {
|
262 |
+
margin-bottom: 1rem;
|
263 |
+
}
|
264 |
+
}
|
265 |
+
.footer {
|
266 |
+
background: var(--card-background);
|
267 |
+
padding: 2rem;
|
268 |
+
margin-top: 2rem;
|
269 |
+
box-shadow: 0 -2px 4px rgba(0, 0, 0, 0.05);
|
270 |
+
}
|
271 |
+
|
272 |
+
.footer-content {
|
273 |
+
max-width: 1200px;
|
274 |
+
margin: 0 auto;
|
275 |
+
display: grid;
|
276 |
+
grid-template-columns: 2fr 1fr;
|
277 |
+
gap: 2rem;
|
278 |
+
}
|
279 |
+
|
280 |
+
.project-info h3 {
|
281 |
+
color: var(--accent-color);
|
282 |
+
margin-bottom: 1rem;
|
283 |
+
font-size: 1.25rem;
|
284 |
+
}
|
285 |
+
|
286 |
+
.project-info p {
|
287 |
+
color: var(--text-secondary);
|
288 |
+
line-height: 1.6;
|
289 |
+
margin-bottom: 1rem;
|
290 |
+
}
|
291 |
+
|
292 |
+
.credit {
|
293 |
+
display: flex;
|
294 |
+
flex-direction: column;
|
295 |
+
align-items: flex-end;
|
296 |
+
justify-content: center;
|
297 |
+
}
|
298 |
+
|
299 |
+
.credit p {
|
300 |
+
color: var(--text-secondary);
|
301 |
+
margin-bottom: 1rem;
|
302 |
+
}
|
303 |
+
|
304 |
+
.credit a {
|
305 |
+
color: var(--primary-color);
|
306 |
+
text-decoration: none;
|
307 |
+
font-weight: 600;
|
308 |
+
transition: color 0.3s ease;
|
309 |
+
}
|
310 |
+
|
311 |
+
.credit a:hover {
|
312 |
+
color: var(--accent-color);
|
313 |
+
}
|
314 |
+
|
315 |
+
.social-links {
|
316 |
+
display: flex;
|
317 |
+
gap: 1rem;
|
318 |
+
}
|
319 |
+
|
320 |
+
.social-links a {
|
321 |
+
color: var(--text-secondary);
|
322 |
+
font-size: 1.5rem;
|
323 |
+
transition: all 0.3s ease;
|
324 |
+
}
|
325 |
+
|
326 |
+
.social-links a:hover {
|
327 |
+
color: var(--primary-color);
|
328 |
+
transform: translateY(-2px);
|
329 |
+
}
|
330 |
+
|
331 |
+
@media (max-width: 768px) {
|
332 |
+
.footer-content {
|
333 |
+
grid-template-columns: 1fr;
|
334 |
+
gap: 1rem;
|
335 |
+
}
|
336 |
+
|
337 |
+
.credit {
|
338 |
+
align-items: flex-start;
|
339 |
+
}
|
340 |
+
}
|
341 |
+
</style>
|
342 |
+
</head>
|
343 |
+
<body>
|
344 |
+
<div class="header">
|
345 |
+
<h1>Beam Search Generator</h1>
|
346 |
+
|
347 |
+
<div class="input-section">
|
348 |
+
<textarea id="prompt" rows="4" placeholder="Enter your prompt here..."></textarea>
|
349 |
+
|
350 |
+
<div class="controls">
|
351 |
+
<div class="input-group">
|
352 |
+
<label for="num_beams">Number of beams</label>
|
353 |
+
<input type="number" id="num_beams" value="5" min="2" max="10">
|
354 |
+
</div>
|
355 |
+
|
356 |
+
<div class="input-group">
|
357 |
+
<label for="max_tokens">Max tokens</label>
|
358 |
+
<input type="number" id="max_tokens" value="512" min="1">
|
359 |
+
</div>
|
360 |
+
</div>
|
361 |
+
|
362 |
+
<div class="slider-container">
|
363 |
+
<label for="sleep_time">Generation Speed</label>
|
364 |
+
<div class="slider-group">
|
365 |
+
<i class="fas fa-bolt" title="Fast"></i>
|
366 |
+
<input type="range" id="sleep_time" min="0" max="500" value="0" step="10">
|
367 |
+
<i class="fas fa-hourglass" title="Slow"></i>
|
368 |
+
<div class="slider-value" id="sleep_value">0ms delay</div>
|
369 |
+
</div>
|
370 |
+
</div>
|
371 |
+
|
372 |
+
<button id="generate-btn" onclick="generate()">
|
373 |
+
<i class="fas fa-wand-magic-sparkles"></i>
|
374 |
+
Generate
|
375 |
+
</button>
|
376 |
+
|
377 |
+
<div id="loading" class="loading">
|
378 |
+
<i class="fas fa-spinner"></i>
|
379 |
+
Generating amazing content...
|
380 |
+
</div>
|
381 |
+
</div>
|
382 |
+
</div>
|
383 |
+
|
384 |
+
<div class="container">
|
385 |
+
<div class="split-container">
|
386 |
+
<div class="left-panel">
|
387 |
+
<h2 class="panel-title">Active Beams</h2>
|
388 |
+
<div id="beams"></div>
|
389 |
+
</div>
|
390 |
+
|
391 |
+
<div class="right-panel">
|
392 |
+
<h2 class="panel-title">Completed Beams</h2>
|
393 |
+
<div id="completed-list"></div>
|
394 |
+
</div>
|
395 |
+
</div>
|
396 |
+
</div>
|
397 |
+
|
398 |
+
<script>
|
399 |
+
let socket = io();
|
400 |
+
let beams = {};
|
401 |
+
let completedBeams = [];
|
402 |
+
let isGenerating = false;
|
403 |
+
|
404 |
+
// Add slider value update
|
405 |
+
const sleepSlider = document.getElementById('sleep_time');
|
406 |
+
const sleepValue = document.getElementById('sleep_value');
|
407 |
+
|
408 |
+
sleepSlider.addEventListener('input', function() {
|
409 |
+
const value = parseInt(this.value);
|
410 |
+
sleepValue.textContent = value === 0 ? 'No delay' : `${value}ms delay`;
|
411 |
+
});
|
412 |
+
|
413 |
+
function setupSocketListeners() {
|
414 |
+
socket.on('beam_update', function(data) {
|
415 |
+
const { beam_idx, text } = data;
|
416 |
+
if (!beams[beam_idx]) {
|
417 |
+
createBeamContainer(beam_idx);
|
418 |
+
}
|
419 |
+
document.getElementById(`beam-${beam_idx}`).textContent = text;
|
420 |
+
});
|
421 |
+
|
422 |
+
socket.on('beam_finished', function(data) {
|
423 |
+
completedBeams.push(data.text);
|
424 |
+
updateCompletedBeams();
|
425 |
+
});
|
426 |
+
|
427 |
+
socket.on('generation_started', function() {
|
428 |
+
isGenerating = true;
|
429 |
+
document.getElementById('generate-btn').disabled = true;
|
430 |
+
document.getElementById('loading').style.display = 'block';
|
431 |
+
document.getElementById('generate-btn').innerHTML = '<i class="fas fa-spinner fa-spin"></i> Generating...';
|
432 |
+
});
|
433 |
+
|
434 |
+
socket.on('generation_completed', function() {
|
435 |
+
isGenerating = false;
|
436 |
+
document.getElementById('generate-btn').disabled = false;
|
437 |
+
document.getElementById('loading').style.display = 'none';
|
438 |
+
document.getElementById('generate-btn').innerHTML = '<i class="fas fa-wand-magic-sparkles"></i> Generate';
|
439 |
+
});
|
440 |
+
|
441 |
+
socket.on('generation_error', function(data) {
|
442 |
+
alert('Error during generation: ' + data.error);
|
443 |
+
isGenerating = false;
|
444 |
+
document.getElementById('generate-btn').disabled = false;
|
445 |
+
document.getElementById('loading').style.display = 'none';
|
446 |
+
document.getElementById('generate-btn').innerHTML = '<i class="fas fa-wand-magic-sparkles"></i> Generate';
|
447 |
+
});
|
448 |
+
|
449 |
+
socket.on('connect_error', function(error) {
|
450 |
+
console.error('Connection error:', error);
|
451 |
+
resetConnection();
|
452 |
+
});
|
453 |
+
}
|
454 |
+
|
455 |
+
function createBeamContainer(beamIdx) {
|
456 |
+
const container = document.createElement('div');
|
457 |
+
container.className = 'beam-container';
|
458 |
+
container.innerHTML = `
|
459 |
+
<h3>Beam ${beamIdx + 1}</h3>
|
460 |
+
<div id="beam-${beamIdx}" class="beam-text"></div>
|
461 |
+
`;
|
462 |
+
document.getElementById('beams').appendChild(container);
|
463 |
+
beams[beamIdx] = container;
|
464 |
+
}
|
465 |
+
|
466 |
+
function updateCompletedBeams() {
|
467 |
+
const completedList = document.getElementById('completed-list');
|
468 |
+
completedList.innerHTML = completedBeams.map((text, idx) => `
|
469 |
+
<div class="beam-container">
|
470 |
+
<h4>Completed Beam ${idx + 1}</h4>
|
471 |
+
<div class="beam-text">${text}</div>
|
472 |
+
</div>
|
473 |
+
`).join('');
|
474 |
+
}
|
475 |
+
|
476 |
+
function resetConnection() {
|
477 |
+
if (socket) {
|
478 |
+
socket.disconnect();
|
479 |
+
}
|
480 |
+
socket = io();
|
481 |
+
setupSocketListeners();
|
482 |
+
}
|
483 |
+
|
484 |
+
function generate() {
|
485 |
+
if (isGenerating) return;
|
486 |
+
|
487 |
+
document.getElementById('beams').innerHTML = '';
|
488 |
+
document.getElementById('completed-list').innerHTML = '';
|
489 |
+
beams = {};
|
490 |
+
completedBeams = [];
|
491 |
+
|
492 |
+
resetConnection();
|
493 |
+
|
494 |
+
const prompt = document.getElementById('prompt').value;
|
495 |
+
const numBeams = parseInt(document.getElementById('num_beams').value);
|
496 |
+
const maxTokens = parseInt(document.getElementById('max_tokens').value);
|
497 |
+
const sleepTime = parseInt(document.getElementById('sleep_time').value);
|
498 |
+
|
499 |
+
socket.emit('generate', {
|
500 |
+
prompt: prompt,
|
501 |
+
num_beams: numBeams,
|
502 |
+
max_tokens: maxTokens,
|
503 |
+
sleep_time: sleepTime
|
504 |
+
});
|
505 |
+
}
|
506 |
+
|
507 |
+
setupSocketListeners();
|
508 |
+
</script>
|
509 |
+
<footer class="footer">
|
510 |
+
<div class="footer-content">
|
511 |
+
<div class="project-info">
|
512 |
+
<h3>About This Project</h3>
|
513 |
+
<p>This website demonstrates the MultiBeamTextStreamer feature proposed in a pull request to the Hugging Face Transformers library. The MultiBeamTextStreamer enables real-time visualization of beam search generation, providing insights into how language models explore different text completion possibilities.</p>
|
514 |
+
<p>The implementation showcases how beam search works by displaying multiple candidate sequences simultaneously, making it a valuable educational tool for understanding text generation algorithms.</p>
|
515 |
+
</div>
|
516 |
+
<div class="credit">
|
517 |
+
<p>Created by <a href="https://github.com/mosheofer1" target="_blank" rel="noopener noreferrer">Moshe Ofer</a></p>
|
518 |
+
<div class="social-links">
|
519 |
+
<a href="https://github.com/mosheofer1" target="_blank" rel="noopener noreferrer" title="GitHub">
|
520 |
+
<i class="fab fa-github"></i>
|
521 |
+
</a>
|
522 |
+
<a href="https://www.linkedin.com/in/moshe-ofer/" target="_blank" rel="noopener noreferrer" title="linkedin">
|
523 |
+
<i class="fas fa-rocket"></i>
|
524 |
+
</a>
|
525 |
+
</div>
|
526 |
+
</div>
|
527 |
+
</div>
|
528 |
+
</footer>
|
529 |
+
</body>
|
530 |
+
</html>
|