Update app.py
Browse files
app.py
CHANGED
|
@@ -10,9 +10,12 @@ from pydantic import BaseModel
|
|
| 10 |
|
| 11 |
class GenModel(BaseModel):
|
| 12 |
question: str
|
| 13 |
-
system: str = "You are a helpful medical assistant."
|
| 14 |
temperature: float = 0.8
|
| 15 |
-
seed: int = 101
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
llm_chat = llama_cpp.Llama.from_pretrained(
|
| 18 |
repo_id="Qwen/Qwen1.5-0.5B-Chat-GGUF",
|
|
@@ -30,6 +33,9 @@ llm_generate = llama_cpp.Llama.from_pretrained(
|
|
| 30 |
verbose=False,
|
| 31 |
n_ctx=4096,
|
| 32 |
n_gpu_layers=0,
|
|
|
|
|
|
|
|
|
|
| 33 |
#chat_format="llama-2"
|
| 34 |
)
|
| 35 |
# Logger setup
|
|
@@ -40,7 +46,13 @@ app = fastapi.FastAPI(
|
|
| 40 |
title="OpenGenAI",
|
| 41 |
description="Your Excellect AI Physician")
|
| 42 |
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
@app.get("/")
|
| 45 |
def index():
|
| 46 |
return fastapi.responses.RedirectResponse(url="/docs")
|
|
@@ -66,17 +78,7 @@ async def chat(gen:GenModel):
|
|
| 66 |
)
|
| 67 |
messages.append({"role": "user", "content": gen.question},)
|
| 68 |
print(output)
|
| 69 |
-
|
| 70 |
-
for chunk in output:
|
| 71 |
-
|
| 72 |
-
delta = chunk['choices'][0]['delta']
|
| 73 |
-
if 'role' in delta:
|
| 74 |
-
print(delta['role'], end=': ')
|
| 75 |
-
elif 'content' in delta:
|
| 76 |
-
print(delta['content'], end='')
|
| 77 |
-
|
| 78 |
-
print(chunk)
|
| 79 |
-
"""
|
| 80 |
et = time()
|
| 81 |
output["time"] = et - st
|
| 82 |
messages.append({'role': "assistant", "content": output['choices'][0]['message']})
|
|
@@ -96,16 +98,17 @@ async def generate(gen:GenModel):
|
|
| 96 |
gen.seed: int = 42
|
| 97 |
try:
|
| 98 |
st = time()
|
| 99 |
-
output = llm_generate.
|
| 100 |
messages=[
|
| 101 |
{"role": "system", "content": gen.system},
|
| 102 |
{"role": "user", "content": gen.question},
|
| 103 |
],
|
| 104 |
temperature = gen.temperature,
|
| 105 |
seed= gen.seed,
|
| 106 |
-
stream=True
|
|
|
|
| 107 |
)
|
| 108 |
-
|
| 109 |
for chunk in output:
|
| 110 |
delta = chunk['choices'][0]['delta']
|
| 111 |
if 'role' in delta:
|
|
@@ -113,7 +116,7 @@ async def generate(gen:GenModel):
|
|
| 113 |
elif 'content' in delta:
|
| 114 |
print(delta['content'], end='')
|
| 115 |
#print(chunk)
|
| 116 |
-
|
| 117 |
et = time()
|
| 118 |
#output["time"] = et - st
|
| 119 |
return output
|
|
|
|
| 10 |
|
| 11 |
class GenModel(BaseModel):
|
| 12 |
question: str
|
| 13 |
+
system: str = "You are a helpful medical AI assistant. Help as much as you can. Remember, response in English."
|
| 14 |
temperature: float = 0.8
|
| 15 |
+
seed: int = 101,
|
| 16 |
+
mirostat_mode=2,
|
| 17 |
+
mirostat_tau=4.0,
|
| 18 |
+
mirostat_eta=1.1
|
| 19 |
|
| 20 |
llm_chat = llama_cpp.Llama.from_pretrained(
|
| 21 |
repo_id="Qwen/Qwen1.5-0.5B-Chat-GGUF",
|
|
|
|
| 33 |
verbose=False,
|
| 34 |
n_ctx=4096,
|
| 35 |
n_gpu_layers=0,
|
| 36 |
+
mirostat_mode=2,
|
| 37 |
+
mirostat_tau=4.0,
|
| 38 |
+
mirostat_eta=1.1
|
| 39 |
#chat_format="llama-2"
|
| 40 |
)
|
| 41 |
# Logger setup
|
|
|
|
| 46 |
title="OpenGenAI",
|
| 47 |
description="Your Excellect AI Physician")
|
| 48 |
|
| 49 |
+
app.add_middleware(
|
| 50 |
+
CORSMiddleware,
|
| 51 |
+
allow_origins = ["*"],
|
| 52 |
+
allow_credentials=True,
|
| 53 |
+
allow_methods=["*"],
|
| 54 |
+
allow_headers=["*"]
|
| 55 |
+
)
|
| 56 |
@app.get("/")
|
| 57 |
def index():
|
| 58 |
return fastapi.responses.RedirectResponse(url="/docs")
|
|
|
|
| 78 |
)
|
| 79 |
messages.append({"role": "user", "content": gen.question},)
|
| 80 |
print(output)
|
| 81 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
et = time()
|
| 83 |
output["time"] = et - st
|
| 84 |
messages.append({'role': "assistant", "content": output['choices'][0]['message']})
|
|
|
|
| 98 |
gen.seed: int = 42
|
| 99 |
try:
|
| 100 |
st = time()
|
| 101 |
+
output = llm_generate.create_completion(
|
| 102 |
messages=[
|
| 103 |
{"role": "system", "content": gen.system},
|
| 104 |
{"role": "user", "content": gen.question},
|
| 105 |
],
|
| 106 |
temperature = gen.temperature,
|
| 107 |
seed= gen.seed,
|
| 108 |
+
#stream=True,
|
| 109 |
+
#echo=True
|
| 110 |
)
|
| 111 |
+
"""
|
| 112 |
for chunk in output:
|
| 113 |
delta = chunk['choices'][0]['delta']
|
| 114 |
if 'role' in delta:
|
|
|
|
| 116 |
elif 'content' in delta:
|
| 117 |
print(delta['content'], end='')
|
| 118 |
#print(chunk)
|
| 119 |
+
"""
|
| 120 |
et = time()
|
| 121 |
#output["time"] = et - st
|
| 122 |
return output
|