Create injest.py
Browse files- app/injest.py +27 -0
app/injest.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 2 |
+
from langchain_community.vectorstores import FAISS
|
| 3 |
+
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
|
| 4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
+
|
| 6 |
+
DATA_PATH = 'data/'
|
| 7 |
+
DB_FAISS_PATH = 'vectorstore/db_faiss'
|
| 8 |
+
|
| 9 |
+
# Create vector database
|
| 10 |
+
def create_vector_db():
|
| 11 |
+
loader = DirectoryLoader(DATA_PATH,
|
| 12 |
+
glob='*.pdf',
|
| 13 |
+
loader_cls=PyPDFLoader)
|
| 14 |
+
|
| 15 |
+
documents = loader.load()
|
| 16 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,
|
| 17 |
+
chunk_overlap=50)
|
| 18 |
+
texts = text_splitter.split_documents(documents)
|
| 19 |
+
|
| 20 |
+
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
|
| 21 |
+
model_kwargs={'device': 'cpu'})
|
| 22 |
+
|
| 23 |
+
db = FAISS.from_documents(texts, embeddings)
|
| 24 |
+
db.save_local(DB_FAISS_PATH)
|
| 25 |
+
|
| 26 |
+
if __name__ == "__main__":
|
| 27 |
+
create_vector_db()
|