Update app/llm.py
Browse files- app/llm.py +8 -3
app/llm.py
CHANGED
@@ -14,11 +14,11 @@ from app.users import current_active_user
|
|
14 |
|
15 |
#from transformers import AutoModelForCausalLM
|
16 |
from transformers import AutoTokenizer, pipeline
|
17 |
-
from optimum.onnxruntime import
|
18 |
|
19 |
-
model = ORTModelForQuestionAnswering.from_pretrained("optimum/roberta-base-squad2")
|
20 |
-
tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
|
21 |
|
|
|
|
|
22 |
class GenModel(BaseModel):
|
23 |
question: str
|
24 |
system: str = "You are a helpful medical AI chat assistant. Help as much as you can.Also continuously ask for possible symptoms in order to atat a conclusive ailment or sickness and possible solutions.Remember, response in English."
|
@@ -118,6 +118,7 @@ async def chat(chatm:ChatModel):#, user: schemas.BaseUser = fastapi.Depends(curr
|
|
118 |
# Chat Completion API
|
119 |
@llm_router.post("/generate", tags=["llm"])
|
120 |
async def generate(gen:GenModel):#, user: schemas.BaseUser = fastapi.Depends(current_active_user)):
|
|
|
121 |
gen.system = "You are an helpful medical AI assistant."
|
122 |
gen.temperature = 0.5
|
123 |
gen.seed = 42
|
@@ -153,5 +154,9 @@ async def generate(gen:GenModel):#, user: schemas.BaseUser = fastapi.Depends(cur
|
|
153 |
return JSONResponse(
|
154 |
status_code=500, content={"message": "Internal Server Error"}
|
155 |
)
|
|
|
|
|
|
|
|
|
156 |
|
157 |
|
|
|
14 |
|
15 |
#from transformers import AutoModelForCausalLM
|
16 |
from transformers import AutoTokenizer, pipeline
|
17 |
+
from optimum.onnxruntime import ORTModelForCausalLM
|
18 |
|
|
|
|
|
19 |
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("moriire/Qwen0.5-healthcare")
|
21 |
+
model = ORTModelForCausalLM.from_pretrained("moriire/Qwen0.5-healthcare")
|
22 |
class GenModel(BaseModel):
|
23 |
question: str
|
24 |
system: str = "You are a helpful medical AI chat assistant. Help as much as you can.Also continuously ask for possible symptoms in order to atat a conclusive ailment or sickness and possible solutions.Remember, response in English."
|
|
|
118 |
# Chat Completion API
|
119 |
@llm_router.post("/generate", tags=["llm"])
|
120 |
async def generate(gen:GenModel):#, user: schemas.BaseUser = fastapi.Depends(current_active_user)):
|
121 |
+
"""
|
122 |
gen.system = "You are an helpful medical AI assistant."
|
123 |
gen.temperature = 0.5
|
124 |
gen.seed = 42
|
|
|
154 |
return JSONResponse(
|
155 |
status_code=500, content={"message": "Internal Server Error"}
|
156 |
)
|
157 |
+
"""
|
158 |
+
onnx_gen = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
159 |
+
generate = onnx_gen(gen.question)
|
160 |
+
return generate
|
161 |
|
162 |
|