moriire commited on
Commit
24c22bc
·
verified ·
1 Parent(s): b16963c

Update app/llm.py

Browse files
Files changed (1) hide show
  1. app/llm.py +8 -3
app/llm.py CHANGED
@@ -14,11 +14,11 @@ from app.users import current_active_user
14
 
15
  #from transformers import AutoModelForCausalLM
16
  from transformers import AutoTokenizer, pipeline
17
- from optimum.onnxruntime import ORTModelForQuestionAnswering
18
 
19
- model = ORTModelForQuestionAnswering.from_pretrained("optimum/roberta-base-squad2")
20
- tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
21
 
 
 
22
  class GenModel(BaseModel):
23
  question: str
24
  system: str = "You are a helpful medical AI chat assistant. Help as much as you can.Also continuously ask for possible symptoms in order to atat a conclusive ailment or sickness and possible solutions.Remember, response in English."
@@ -118,6 +118,7 @@ async def chat(chatm:ChatModel):#, user: schemas.BaseUser = fastapi.Depends(curr
118
  # Chat Completion API
119
  @llm_router.post("/generate", tags=["llm"])
120
  async def generate(gen:GenModel):#, user: schemas.BaseUser = fastapi.Depends(current_active_user)):
 
121
  gen.system = "You are an helpful medical AI assistant."
122
  gen.temperature = 0.5
123
  gen.seed = 42
@@ -153,5 +154,9 @@ async def generate(gen:GenModel):#, user: schemas.BaseUser = fastapi.Depends(cur
153
  return JSONResponse(
154
  status_code=500, content={"message": "Internal Server Error"}
155
  )
 
 
 
 
156
 
157
 
 
14
 
15
  #from transformers import AutoModelForCausalLM
16
  from transformers import AutoTokenizer, pipeline
17
+ from optimum.onnxruntime import ORTModelForCausalLM
18
 
 
 
19
 
20
+ tokenizer = AutoTokenizer.from_pretrained("moriire/Qwen0.5-healthcare")
21
+ model = ORTModelForCausalLM.from_pretrained("moriire/Qwen0.5-healthcare")
22
  class GenModel(BaseModel):
23
  question: str
24
  system: str = "You are a helpful medical AI chat assistant. Help as much as you can.Also continuously ask for possible symptoms in order to atat a conclusive ailment or sickness and possible solutions.Remember, response in English."
 
118
  # Chat Completion API
119
  @llm_router.post("/generate", tags=["llm"])
120
  async def generate(gen:GenModel):#, user: schemas.BaseUser = fastapi.Depends(current_active_user)):
121
+ """
122
  gen.system = "You are an helpful medical AI assistant."
123
  gen.temperature = 0.5
124
  gen.seed = 42
 
154
  return JSONResponse(
155
  status_code=500, content={"message": "Internal Server Error"}
156
  )
157
+ """
158
+ onnx_gen = pipeline("text-generation", model=model, tokenizer=tokenizer)
159
+ generate = onnx_gen(gen.question)
160
+ return generate
161
 
162