monkseal555 commited on
Commit
687282e
·
verified ·
1 Parent(s): c44e0ea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -12
app.py CHANGED
@@ -17,7 +17,7 @@ from huggingface_hub import hf_hub_download
17
  #gradio.helpers.CACHED_FOLDER = '/data/cache'
18
 
19
  pipe = StableVideoDiffusionPipeline.from_pretrained(
20
- "multimodalart/stable-video-diffusion", torch_dtype=torch.float16, variant="fp16"
21
  )
22
  pipe.to("cuda")
23
  pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
@@ -86,8 +86,7 @@ def resize_image(image, output_size=(1024, 576)):
86
  return cropped_image
87
 
88
  with gr.Blocks() as demo:
89
- gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact))
90
- #### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [🧨 diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd).
91
  ''')
92
  with gr.Row():
93
  with gr.Column():
@@ -104,15 +103,7 @@ with gr.Blocks() as demo:
104
  generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
105
  gr.Examples(
106
  examples=[
107
- "images/blink_meme.png",
108
- "images/confused2_meme.png",
109
- "images/disaster_meme.png",
110
- "images/distracted_meme.png",
111
- "images/hide_meme.png",
112
- "images/nazare_meme.png",
113
- "images/success_meme.png",
114
- "images/willy_meme.png",
115
- "images/wink_meme.png"
116
  ],
117
  inputs=image,
118
  outputs=[video, seed],
 
17
  #gradio.helpers.CACHED_FOLDER = '/data/cache'
18
 
19
  pipe = StableVideoDiffusionPipeline.from_pretrained(
20
+ "monkseal555/ian1", torch_dtype=torch.float16, variant="fp16"
21
  )
22
  pipe.to("cuda")
23
  pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
 
86
  return cropped_image
87
 
88
  with gr.Blocks() as demo:
89
+ gr.Markdown('''generative radar predictor).
 
90
  ''')
91
  with gr.Row():
92
  with gr.Column():
 
103
  generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
104
  gr.Examples(
105
  examples=[
106
+
 
 
 
 
 
 
 
 
107
  ],
108
  inputs=image,
109
  outputs=[video, seed],