cv_backbones / app.py
admin
sync ms
b5b0595
raw
history blame
4.91 kB
import os
import re
import json
import requests
import gradio as gr
import pandas as pd
from tqdm import tqdm
from bs4 import BeautifulSoup
V_TO_SPLIT = {"IMAGENET1K_V1": "train", "IMAGENET1K_V2": "test"}
def parse_url(url: str):
response = requests.get(url)
html = response.text
return BeautifulSoup(html, "html.parser")
def special_type(m_ver: str):
m_type = re.search("[a-zA-Z]+", m_ver).group(0)
if m_type == "wide" or m_type == "resnext":
return "resnet"
elif m_type == "swin":
return "swin_transformer"
elif m_type == "inception":
return "googlenet"
return m_type
def info_on_dataset(m_ver: str, m_type: str, in1k_span):
url_span = in1k_span.find_next_sibling("span", {"class": "s2"})
size_span = url_span.find_next_sibling("span", {"class": "mi"})
m_url = str(url_span.text[1:-1])
input_size = int(size_span.text)
m_dict = {"ver": m_ver, "type": m_type, "input_size": input_size, "url": m_url}
return m_dict, size_span
def gen_dataframe(url="https://pytorch.org/vision/main/_modules/"):
torch_page = parse_url(url)
article = torch_page.find("article", {"id": "pytorch-article"})
ul = article.find("ul").find("ul")
in1k_v1, in1k_v2 = [], []
for li in tqdm(ul.find_all("li"), desc="Crawling cv backbone info..."):
name = str(li.text)
if name.__contains__("torchvision.models.") and len(name.split(".")) == 3:
if name.__contains__("_api") or name.__contains__("feature_extraction"):
continue
href = li.find("a").get("href")
model_page = parse_url(url + href)
divs = model_page.select("div.viewcode-block")
for div in divs:
div_id = str(div["id"])
if div_id.__contains__("_Weights"):
m_ver = div_id.split("_Weight")[0].lower()
m_type = special_type(m_ver)
in1k_v1_span = div.find(
name="span",
attrs={"class": "n"},
string="IMAGENET1K_V1",
)
if not in1k_v1_span:
continue
m_dict, size_span = info_on_dataset(m_ver, m_type, in1k_v1_span)
in1k_v1.append(m_dict)
in1k_v2_span = size_span.find_next_sibling(
name="span",
attrs={"class": "n"},
string="IMAGENET1K_V2",
)
if in1k_v2_span:
m_dict, _ = info_on_dataset(m_ver, m_type, in1k_v2_span)
in1k_v2.append(m_dict)
dataset = {"IMAGENET1K_V1": in1k_v1, "IMAGENET1K_V2": in1k_v2}
with open("train.jsonl", "w", encoding="utf-8") as jsonl_file:
for item in in1k_v1:
jsonl_file.write(json.dumps(item) + "\n")
with open("test.jsonl", "w", encoding="utf-8") as jsonl_file:
for item in in1k_v2:
jsonl_file.write(json.dumps(item) + "\n")
return dataset
# outer func
def infer(subset: str):
status = "Success"
prewiew = out_json = None
try:
cache_json = f"{V_TO_SPLIT[subset]}.jsonl"
if os.path.exists(cache_json):
with open(cache_json, "r", encoding="utf-8") as jsonl_file:
dataset = [json.loads(line) for line in jsonl_file]
else:
dataset = gen_dataframe()[subset]
prewiew = pd.DataFrame(dataset)
out_json = cache_json
except Exception as e:
status = f"{e}"
return status, prewiew, out_json
# outer func
def sync(subset: str):
status = "Success"
try:
cache_json = f"{V_TO_SPLIT[subset]}.jsonl"
if os.path.exists(cache_json):
os.remove(cache_json)
if os.path.exists(cache_json):
raise Exception(f"Failed to clean {cache_json}")
except Exception as e:
status = f"{e}"
return status, None
if __name__ == "__main__":
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
subset_opt = gr.Dropdown(
label="ImageNet version",
choices=["IMAGENET1K_V1", "IMAGENET1K_V2"],
value="IMAGENET1K_V1",
)
sync_btn = gr.Button("Clean cache")
with gr.Column():
status_bar = gr.Textbox(label="Status", show_copy_button=True)
dld_file = gr.File(label="Download JSON lines")
with gr.Row():
data_frame = gr.Dataframe(label="Preview")
subset_opt.change(
infer,
inputs=subset_opt,
outputs=[status_bar, data_frame, dld_file],
)
sync_btn.click(sync, inputs=subset_opt, outputs=[status_bar, dld_file])
demo.launch()