Spaces:
Running
Running
import os | |
import re | |
import json | |
import requests | |
import gradio as gr | |
import pandas as pd | |
from tqdm import tqdm | |
from bs4 import BeautifulSoup | |
cache_json = 'cv_backbones.json' | |
def parse_url(url): | |
response = requests.get(url) | |
html = response.text | |
return BeautifulSoup(html, 'html.parser') | |
def special_type(m_ver): | |
m_type = re.search('[a-zA-Z]+', m_ver).group(0) | |
if m_type == 'wide' or m_type == 'resnext': | |
return 'resnet' | |
elif m_type == 'swin': | |
return 'swin_transformer' | |
elif m_type == 'inception': | |
return 'googlenet' | |
return m_type | |
def info_on_dataset(m_ver, m_type, in1k_span): | |
url_span = in1k_span.find_next_sibling('span', {'class': 's2'}) | |
size_span = url_span.find_next_sibling('span', {'class': 'mi'}) | |
m_url = str(url_span.text[1:-1]) | |
input_size = int(size_span.text) | |
m_dict = { | |
'ver': m_ver, | |
'type': m_type, | |
'input_size': input_size, | |
'url': m_url | |
} | |
return m_dict, size_span | |
def gen_dataframe(url='https://pytorch.org/vision/main/_modules/'): | |
torch_page = parse_url(url) | |
article = torch_page.find('article', {'id': 'pytorch-article'}) | |
ul = article.find('ul').find('ul') | |
in1k_v1, in1k_v2 = [], [] | |
for li in tqdm(ul.find_all('li'), desc='Crawling cv backbone info...'): | |
name = str(li.text) | |
if name.__contains__('torchvision.models.') and len(name.split('.')) == 3: | |
if name.__contains__('_api') or \ | |
name.__contains__('feature_extraction') or \ | |
name.__contains__('maxvit'): | |
continue | |
href = li.find('a').get('href') | |
model_page = parse_url(url + href) | |
divs = model_page.select('div.viewcode-block') | |
for div in divs: | |
div_id = str(div['id']) | |
if div_id.__contains__('_Weights'): | |
m_ver = div_id.split('_Weight')[0].lower() | |
if m_ver.__contains__('swin_v2_'): | |
continue | |
m_type = special_type(m_ver) | |
in1k_v1_span = div.find( | |
name='span', | |
attrs={'class': 'n'}, | |
string='IMAGENET1K_V1' | |
) | |
if not in1k_v1_span: | |
continue | |
m_dict, size_span = info_on_dataset( | |
m_ver, | |
m_type, | |
in1k_v1_span | |
) | |
in1k_v1.append(m_dict) | |
in1k_v2_span = size_span.find_next_sibling( | |
name='span', | |
attrs={'class': 'n'}, | |
string='IMAGENET1K_V2' | |
) | |
if in1k_v2_span: | |
m_dict, _ = info_on_dataset( | |
m_ver, | |
m_type, | |
in1k_v2_span | |
) | |
in1k_v2.append(m_dict) | |
dataset = { | |
'IMAGENET1K_V1': in1k_v1, | |
'IMAGENET1K_V2': in1k_v2 | |
} | |
with open('IMAGENET1K_V1.jsonl', 'w', encoding='utf-8') as jsonl_file: | |
for item in in1k_v1: | |
jsonl_file.write(json.dumps(item) + '\n') | |
with open('IMAGENET1K_V2.jsonl', 'w', encoding='utf-8') as jsonl_file: | |
for item in in1k_v2: | |
jsonl_file.write(json.dumps(item) + '\n') | |
return dataset | |
def inference(subset): | |
cache_json = f'{subset}.jsonl' | |
if os.path.exists(cache_json): | |
with open(cache_json, 'r', encoding='utf-8') as jsonl_file: | |
dataset = [json.loads(line) for line in jsonl_file] | |
else: | |
dataset = gen_dataframe()[subset] | |
return pd.DataFrame(dataset), cache_json | |
def sync(subset): | |
cache_json = f'{subset}.jsonl' | |
if os.path.exists(cache_json): | |
os.remove(cache_json) | |
return None | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
subset_opt = gr.Dropdown( | |
choices=['IMAGENET1K_V1', 'IMAGENET1K_V2'], | |
value='IMAGENET1K_V1' | |
) | |
sync_btn = gr.Button("Clean cache") | |
dld_file = gr.components.File(label="Download JSON lines") | |
with gr.Row(): | |
data_frame = gr.Dataframe( | |
headers=["ver", "type", "input_size", "url"] | |
) | |
subset_opt.change( | |
inference, | |
inputs=subset_opt, | |
outputs=[data_frame, dld_file] | |
) | |
sync_btn.click( | |
sync, | |
inputs=subset_opt, | |
outputs=dld_file | |
) | |
demo.launch(share=True) | |