import os import sys import time import torch import requests import subprocess import modelscope import huggingface_hub from tqdm import tqdm TEMP_DIR = "./__pycache__" LANG = os.getenv("language") WEIGHTS_DIR = ( huggingface_hub.snapshot_download("monetjoe/EMelodyGen", cache_dir=TEMP_DIR) if LANG else modelscope.snapshot_download("monetjoe/EMelodyGen", cache_dir=TEMP_DIR) ) DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") PATCH_LENGTH = 128 # Patch Length PATCH_SIZE = 32 # Patch Size PATCH_NUM_LAYERS = 9 # Number of layers in the encoder CHAR_NUM_LAYERS = 3 # Number of layers in the decoder PATCH_SAMPLING_BATCH_SIZE = 0 # Batch size for training patch, 0 for full context LOAD_FROM_CHECKPOINT = True # Whether to load weights from a checkpoint SHARE_WEIGHTS = False # Whether to share weights between the encoder and decoder def download(filename: str, url: str): try: response = requests.get(url, stream=True) total_size = int(response.headers.get("content-length", 0)) chunk_size = 1024 with open(filename, "wb") as file, tqdm( desc=f"Downloading {filename} from {url}...", total=total_size, unit="B", unit_scale=True, unit_divisor=1024, ) as bar: for data in response.iter_content(chunk_size=chunk_size): size = file.write(data) bar.update(size) except Exception as e: print(f"Error: {e}") time.sleep(10) download(filename, url) if sys.platform.startswith("linux"): apkname = "MuseScore.AppImage" extra_dir = "squashfs-root" download(filename=apkname, url=os.getenv("mscore")) if not os.path.exists(extra_dir): subprocess.run(["chmod", "+x", f"./{apkname}"]) subprocess.run([f"./{apkname}", "--appimage-extract"]) MSCORE = f"./{extra_dir}/AppRun" os.environ["QT_QPA_PLATFORM"] = "offscreen" else: MSCORE = os.getenv("mscore")