import streamlit as st import pandas as pd import matplotlib.pyplot as plt from textblob import TextBlob def load_data(uploaded_file): df = pd.read_excel(uploaded_file) return df def analyze_sentiment(text): polarity = TextBlob(str(text)).sentiment.polarity if polarity >= 0.6: return "Very Positive" elif polarity >= 0.2: return "Positive" elif polarity > -0.2: return "Neutral" elif polarity > -0.6: return "Negative" else: return "Very Negative" st.title("Sentiment Analysis with Pie Chart") uploaded_file = st.file_uploader("Upload an Excel file with text data", type=["xlsx"]) if uploaded_file is not None: df = load_data(uploaded_file) if "text" not in df.columns: st.error("Error: The file must contain a 'text' column.") else: df["Sentiment"] = df["text"].apply(analyze_sentiment) st.write("Here is a preview of the data:") st.write(df.head()) sentiment_counts = df["Sentiment"].value_counts() fig, ax = plt.subplots() ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct="%1.1f%%", colors=["green", "lightgreen", "gray", "orange", "red"]) ax.set_title("Sentiment Distribution") st.pyplot(fig) csv = df.to_csv(index=False) st.download_button("Download Sentiment Data", csv, "sentiment_results.csv", "text/csv") else: st.write("Please upload an Excel file to get started.")