Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from textblob import TextBlob | |
def load_data(uploaded_file): | |
df = pd.read_excel(uploaded_file) | |
return df | |
def analyze_sentiment(text): | |
polarity = TextBlob(str(text)).sentiment.polarity | |
if polarity >= 0.6: | |
return "Very Positive" | |
elif polarity >= 0.2: | |
return "Positive" | |
elif polarity > -0.2: | |
return "Neutral" | |
elif polarity > -0.6: | |
return "Negative" | |
else: | |
return "Very Negative" | |
st.title("Sentiment Analysis with Pie Chart") | |
uploaded_file = st.file_uploader("Upload an Excel file with text data", type=["xlsx"]) | |
if uploaded_file is not None: | |
df = load_data(uploaded_file) | |
if "text" not in df.columns: | |
st.error("Error: The file must contain a 'text' column.") | |
else: | |
df["Sentiment"] = df["text"].apply(analyze_sentiment) | |
st.write("Here is a preview of the data:") | |
st.write(df.head()) | |
sentiment_counts = df["Sentiment"].value_counts() | |
fig, ax = plt.subplots() | |
ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct="%1.1f%%", colors=["green", "lightgreen", "gray", "orange", "red"]) | |
ax.set_title("Sentiment Distribution") | |
st.pyplot(fig) | |
csv = df.to_csv(index=False) | |
st.download_button("Download Sentiment Data", csv, "sentiment_results.csv", "text/csv") | |
else: | |
st.write("Please upload an Excel file to get started.") | |