import pandas as pd csv_path = "src/data/yt_data.csv" UPDATED_CSV_PATH = "src/data/merged_yt_data.csv" # csv_df = pd.read_csv(csv_path) def get_updated_df(): final_csv_df = pd.read_csv(UPDATED_CSV_PATH) return final_csv_df # df = get_updated_df() # print(df.columns) # # Load JSON file # json_path = "category_id.json" # json_df = pd.read_json(json_path) # # Extract category ID and title from JSON # category_df = pd.json_normalize(json_df["items"]) # category_df = category_df[["id", "snippet.title"]].rename( # columns={"id": "category_id", "snippet.title": "category_name"}) # # Merge CSV data with category data on category_id # csv_df["category_id"] = csv_df["category_id"].astype( # str) # Ensure category_id is a string for merging # merged_df = pd.merge(csv_df, category_df, on="category_id", # how="left") # Left join to keep all video data # # Save the merged DataFrame as a new CSV file # merged_path = "merged_yt_data.csv" # merged_df.to_csv(merged_path, index=False)