File size: 6,422 Bytes
89457d3
74bdacd
 
 
 
 
6e1cb75
74bdacd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import streamlit as st 
import requests
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt

API_BASE_URL = "http://localhost:8000"
CSV_FILE_PATH = "src/data/merged_yt_data.csv"
KAGGLE_LINK = "https://www.kaggle.com/datasets/rsrishav/youtube-trending-video-dataset?select=IN_category_id.json"

st.set_page_config(
    page_title="YouTube Trending Insights",
    layout="wide",
    initial_sidebar_state="expanded"
)

st.markdown("""
    <style>
    .main {
        background-color: #f5f5f5;
        padding: 20px;
        border-radius: 10px;
    }
    .title {
        color: #ff0000;
        font-family: 'Arial', sans-serif;
        text-align: center;
        padding: 20px 0;
    }
    .subtitle {
        color: #333333;
        font-family: 'Arial', sans-serif;
        padding: 10px 0;
    }
    .stButton>button {
        background-color: #ff0000;
        color: white;
        border-radius: 5px;
        padding: 10px 20px;
    }
    .stButton>button:hover {
        background-color: #cc0000;
    }
    </style>
""", unsafe_allow_html=True)

# Sidebar with Logo and Select Box
with st.sidebar:
    st.markdown("""
        <div style='text-align:center;'>
            <img src='https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg' width='80%'>
        </div>
    """, unsafe_allow_html=True)
    
    st.markdown("<h2 class='subtitle'>πŸ“Š YouTube Analytics</h2>", unsafe_allow_html=True)
    

       # Kaggle Dataset Link
    st.sidebar.markdown("""
        <h3 style='text-align:center;'>πŸ“‚ Kaggle Dataset</h3>
        <p style='text-align:center;'>
            <a href='{}' target='_blank' style='text-decoration:none;'>
                <button style='background-color:#ff0000; color:white; padding:10px 20px; border:none; border-radius:5px; cursor:pointer;'>
                    πŸ”— Open Kaggle Dataset
                </button>
            </a>
        </p>
    """.format(KAGGLE_LINK), unsafe_allow_html=True)
    # Analysis Options
    options = {
        "πŸ“ˆ Trending Videos Over Time": "/trending_videos_count",
        "πŸ₯§ Most Popular Categories": "/most_popular_categories",
        "πŸ“Š Like Ratio Distribution": "/engagement/like_ratio_distribution",
        "πŸ‘ Top Liked Videos": "/engagement/top_liked_videos",
        "πŸ† Top Trending Channels": "/channel-performance/top-trending",
        "πŸ“… Channel Growth Over Time": "/channel-performance/growth-over-time",
        "❀️ Category Like-View Ratio": "/category-like-view-ratio",
        "πŸ’¬ Category Comment Engagement": "/category-comment-engagement"
    }

    selected_option = st.selectbox("Choose an analysis:", list(options.keys()), 
                                 help="Select a visualization to explore YouTube trends")

def fetch_data(endpoint):
    try:
        response = requests.get(f"{API_BASE_URL}{endpoint}")
        response.raise_for_status()
        return response.json()
    except requests.RequestException as e:
        st.error(f"Failed to fetch data: {e}")
        return None

st.markdown(f"<h2 class='subtitle'>{selected_option}</h2>", unsafe_allow_html=True)
data = fetch_data(options[selected_option])

if data:
    if "Trending Videos" in selected_option:
        df = pd.DataFrame(data["trending_video_counts"].items(), columns=["Date", "Count"])
        df["Date"] = pd.to_datetime(df["Date"])
        fig = px.line(df, x="Date", y="Count", title="Trending Videos Over Time")
        st.plotly_chart(fig, use_container_width=True)

    elif "Popular Categories" in selected_option:
        df = pd.DataFrame.from_dict(data["most_popular_categories"], orient='index', columns=["Count"])
        fig = px.pie(df, names=df.index, values="Count", title="Popular Categories",
                    hole=0.4, color_discrete_sequence=px.colors.sequential.RdBu)
        st.plotly_chart(fig, use_container_width=True)

    elif "Like Ratio" in selected_option:
        df = pd.DataFrame(data["like_ratio_distribution"])
        fig = px.histogram(df, x="like_ratio", nbins=50, title="Like Ratio Distribution",
                         color_discrete_sequence=['#ff0000'])
        st.plotly_chart(fig, use_container_width=True)

    elif "Top Liked Videos" in selected_option:
        df = pd.DataFrame(data["top_liked_videos"])
        fig = px.bar(df, x="title", y="likes", title="πŸ” Top Liked Videos",
                    color="likes", color_continuous_scale="Reds")
        st.plotly_chart(fig, use_container_width=True)

       

    elif "Top Trending Channels" in selected_option:
        df = pd.DataFrame(data["top_trending_channels"].items(), columns=["Channel", "Trending Count"])
        df = df.sort_values(by="Trending Count", ascending=False).head(10)
        fig = px.bar(df, x="Channel", y="Trending Count", title="Top Trending Channels",
                    color="Trending Count", color_continuous_scale="Reds")
        st.plotly_chart(fig, use_container_width=True)

    elif "Channel Growth" in selected_option:
        df = pd.DataFrame(data)
        fig = px.line(df, x="published_month", y="video_count", color="channelTitle",
                     title="Channel Growth Over Time", line_shape="spline")
        st.plotly_chart(fig, use_container_width=True)

    elif "Like-View Ratio" in selected_option:
        df = pd.DataFrame(data["data"])
        fig = px.sunburst(df, path=["category_name"], values="like_view_ratio",
                        title="Category Like-View Ratio", color="like_view_ratio",
                        color_continuous_scale="RdYlBu")
        st.plotly_chart(fig, use_container_width=True)

    elif "Comment Engagement" in selected_option:
        df = pd.DataFrame(data["data"])
        fig = px.treemap(df, path=["category_name"], values="comment_count",
                       title="Category Comment Engagement", color="comment_count",
                       color_continuous_scale="Blues")
        st.plotly_chart(fig, use_container_width=True)

# Dataset Preview
st.sidebar.markdown("<h2 class='subtitle'>πŸ“‹ Dataset Preview</h2>", unsafe_allow_html=True)
with st.sidebar.expander("View Raw Dataset", expanded=False):
    if st.button("Show Dataset Preview"):
        try:
            df_csv = pd.read_csv(CSV_FILE_PATH)
            st.dataframe(df_csv.head(1000), use_container_width=True)
        except Exception as e:
            st.error(f"Error loading dataset: {e}")