Spaces:
Running
Running
File size: 6,422 Bytes
89457d3 74bdacd 6e1cb75 74bdacd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import streamlit as st
import requests
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
API_BASE_URL = "http://localhost:8000"
CSV_FILE_PATH = "src/data/merged_yt_data.csv"
KAGGLE_LINK = "https://www.kaggle.com/datasets/rsrishav/youtube-trending-video-dataset?select=IN_category_id.json"
st.set_page_config(
page_title="YouTube Trending Insights",
layout="wide",
initial_sidebar_state="expanded"
)
st.markdown("""
<style>
.main {
background-color: #f5f5f5;
padding: 20px;
border-radius: 10px;
}
.title {
color: #ff0000;
font-family: 'Arial', sans-serif;
text-align: center;
padding: 20px 0;
}
.subtitle {
color: #333333;
font-family: 'Arial', sans-serif;
padding: 10px 0;
}
.stButton>button {
background-color: #ff0000;
color: white;
border-radius: 5px;
padding: 10px 20px;
}
.stButton>button:hover {
background-color: #cc0000;
}
</style>
""", unsafe_allow_html=True)
# Sidebar with Logo and Select Box
with st.sidebar:
st.markdown("""
<div style='text-align:center;'>
<img src='https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg' width='80%'>
</div>
""", unsafe_allow_html=True)
st.markdown("<h2 class='subtitle'>π YouTube Analytics</h2>", unsafe_allow_html=True)
# Kaggle Dataset Link
st.sidebar.markdown("""
<h3 style='text-align:center;'>π Kaggle Dataset</h3>
<p style='text-align:center;'>
<a href='{}' target='_blank' style='text-decoration:none;'>
<button style='background-color:#ff0000; color:white; padding:10px 20px; border:none; border-radius:5px; cursor:pointer;'>
π Open Kaggle Dataset
</button>
</a>
</p>
""".format(KAGGLE_LINK), unsafe_allow_html=True)
# Analysis Options
options = {
"π Trending Videos Over Time": "/trending_videos_count",
"π₯§ Most Popular Categories": "/most_popular_categories",
"π Like Ratio Distribution": "/engagement/like_ratio_distribution",
"π Top Liked Videos": "/engagement/top_liked_videos",
"π Top Trending Channels": "/channel-performance/top-trending",
"π
Channel Growth Over Time": "/channel-performance/growth-over-time",
"β€οΈ Category Like-View Ratio": "/category-like-view-ratio",
"π¬ Category Comment Engagement": "/category-comment-engagement"
}
selected_option = st.selectbox("Choose an analysis:", list(options.keys()),
help="Select a visualization to explore YouTube trends")
def fetch_data(endpoint):
try:
response = requests.get(f"{API_BASE_URL}{endpoint}")
response.raise_for_status()
return response.json()
except requests.RequestException as e:
st.error(f"Failed to fetch data: {e}")
return None
st.markdown(f"<h2 class='subtitle'>{selected_option}</h2>", unsafe_allow_html=True)
data = fetch_data(options[selected_option])
if data:
if "Trending Videos" in selected_option:
df = pd.DataFrame(data["trending_video_counts"].items(), columns=["Date", "Count"])
df["Date"] = pd.to_datetime(df["Date"])
fig = px.line(df, x="Date", y="Count", title="Trending Videos Over Time")
st.plotly_chart(fig, use_container_width=True)
elif "Popular Categories" in selected_option:
df = pd.DataFrame.from_dict(data["most_popular_categories"], orient='index', columns=["Count"])
fig = px.pie(df, names=df.index, values="Count", title="Popular Categories",
hole=0.4, color_discrete_sequence=px.colors.sequential.RdBu)
st.plotly_chart(fig, use_container_width=True)
elif "Like Ratio" in selected_option:
df = pd.DataFrame(data["like_ratio_distribution"])
fig = px.histogram(df, x="like_ratio", nbins=50, title="Like Ratio Distribution",
color_discrete_sequence=['#ff0000'])
st.plotly_chart(fig, use_container_width=True)
elif "Top Liked Videos" in selected_option:
df = pd.DataFrame(data["top_liked_videos"])
fig = px.bar(df, x="title", y="likes", title="π Top Liked Videos",
color="likes", color_continuous_scale="Reds")
st.plotly_chart(fig, use_container_width=True)
elif "Top Trending Channels" in selected_option:
df = pd.DataFrame(data["top_trending_channels"].items(), columns=["Channel", "Trending Count"])
df = df.sort_values(by="Trending Count", ascending=False).head(10)
fig = px.bar(df, x="Channel", y="Trending Count", title="Top Trending Channels",
color="Trending Count", color_continuous_scale="Reds")
st.plotly_chart(fig, use_container_width=True)
elif "Channel Growth" in selected_option:
df = pd.DataFrame(data)
fig = px.line(df, x="published_month", y="video_count", color="channelTitle",
title="Channel Growth Over Time", line_shape="spline")
st.plotly_chart(fig, use_container_width=True)
elif "Like-View Ratio" in selected_option:
df = pd.DataFrame(data["data"])
fig = px.sunburst(df, path=["category_name"], values="like_view_ratio",
title="Category Like-View Ratio", color="like_view_ratio",
color_continuous_scale="RdYlBu")
st.plotly_chart(fig, use_container_width=True)
elif "Comment Engagement" in selected_option:
df = pd.DataFrame(data["data"])
fig = px.treemap(df, path=["category_name"], values="comment_count",
title="Category Comment Engagement", color="comment_count",
color_continuous_scale="Blues")
st.plotly_chart(fig, use_container_width=True)
# Dataset Preview
st.sidebar.markdown("<h2 class='subtitle'>π Dataset Preview</h2>", unsafe_allow_html=True)
with st.sidebar.expander("View Raw Dataset", expanded=False):
if st.button("Show Dataset Preview"):
try:
df_csv = pd.read_csv(CSV_FILE_PATH)
st.dataframe(df_csv.head(1000), use_container_width=True)
except Exception as e:
st.error(f"Error loading dataset: {e}")
|