import torch import os import streamlit as st from transformers import AutoTokenizer, AutoModelForSequenceClassification os.environ["TRANSFORMERS_CACHE"] = "/app/.cache/huggingface" os.environ["HF_HOME"] = "/app/.cache/huggingface" os.environ["TORCH_HOME"] = "/app/.cache/torch" hf_token = os.getenv("HateSpeechMujtabatoken") text_model = AutoModelForSequenceClassification.from_pretrained("GroNLP/hateBERT", token=hf_token) tokenizer = AutoTokenizer.from_pretrained("GroNLP/hateBERT", token=hf_token) def extract_text_features(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) outputs = text_model(**inputs) predicted_class = outputs.logits.argmax(dim=1).item() return "Hate Speech" if predicted_class >= 1 else "Not Hate Speech" def predict(text_input): if not text_input: return "Please enter some text." prediction = extract_text_features(text_input) return f"Predicted: {prediction}" st.title("Hate Speech Detector") text_input = st.text_input("Enter text:") if st.button("Predict"): result = predict(text_input) st.success(result)