import torch import torchaudio import os import streamlit as st import sounddevice as sd import soundfile as sf from transformers import WhisperProcessor, WhisperForConditionalGeneration from transformers import AutoTokenizer, AutoModelForSequenceClassification os.environ["TRANSFORMERS_CACHE"] = "/app/.cache/huggingface" os.environ["HF_HOME"] = "/app/.cache/huggingface" os.environ["TORCH_HOME"] = "/app/.cache/torch" hf_token = os.getenv("HateSpeechMujtabatoken") whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny", token=hf_token) whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny", token=hf_token) text_model = AutoModelForSequenceClassification.from_pretrained("GroNLP/hateBERT", token=hf_token) tokenizer = AutoTokenizer.from_pretrained("GroNLP/hateBERT", token=hf_token) def record_audio(duration, filename, samplerate=16000): recording = sd.rec(int(duration * samplerate), samplerate=samplerate, channels=1, dtype='float32') sd.wait() sf.write(filename, recording, samplerate) def transcribe(audio_path): waveform, sample_rate = torchaudio.load(audio_path) input_features = whisper_processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt").input_features predicted_ids = whisper_model.generate(input_features) transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] return transcription def extract_text_features(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) outputs = text_model(**inputs) predicted_class = outputs.logits.argmax(dim=1).item() return "Hate Speech" if predicted_class >= 1 else "Not Hate Speech" def predict(text_input): audio_path = "mic_input.wav" record_audio(5, audio_path) transcribed_text = transcribe(audio_path) prediction = extract_text_features(text_input or transcribed_text) if text_input: return f"Predicted: {prediction}" else: return f"Predicted: {prediction} \n\n(Transcribed: {transcribed_text})" st.title("Hate Speech Detector") text_input = st.text_input("Enter text (optional):") if st.button("Start Recording and Predict"): result = predict(text_input) st.success(result)