import os import torch import torchaudio import tempfile from transformers import WhisperProcessor, WhisperForConditionalGeneration from transformers import AutoTokenizer, AutoModelForSequenceClassification import streamlit as st os.environ["TRANSFORMERS_CACHE"] = "/app/cache" os.makedirs("/app/cache", exist_ok=True) whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny") text_model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased") tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") def transcribe(audio_bytes): with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp: tmp.write(audio_bytes) tmp_path = tmp.name waveform, sample_rate = torchaudio.load(tmp_path) input_features = whisper_processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt").input_features predicted_ids = whisper_model.generate(input_features) transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] os.remove(tmp_path) return transcription def extract_text_features(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) outputs = text_model(**inputs) return outputs.logits.argmax(dim=1).item() def predict