import torch import torchaudio from transformers import WhisperProcessor, WhisperForConditionalGeneration from transformers import AutoTokenizer, AutoModelForSequenceClassification import streamlit as st text_model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased") tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny") def transcribe(audio_path): waveform, sample_rate = torchaudio.load(audio_path) input_features = whisper_processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt").input_features predicted_ids = whisper_model.generate(input_features) transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] return transcription def extract_text_features(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) outputs = text_model(**inputs) return outputs.logits.argmax(dim=1).item() def predict_hate_speech(audio_path, text): transcription = transcribe(audio_path) text_input = text if text else transcription prediction = extract_text_features(text_input) return "Hate Speech" if prediction == 1 else "Not Hate Speech" st.title("Hate Speech Detector with Audio and Text") audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "flac"]) text_input = st.text_input("Optional text input") if st.button("Predict"): if audio_file is not None: with open("temp_audio.wav", "wb") as f: f.write(audio_file.read()) prediction = predict_hate_speech("temp_audio.wav", text_input) st.success(prediction) else: st.warning("Please upload an audio file.")