mojad121 commited on
Commit
fadd888
·
verified ·
1 Parent(s): 93dfcec

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +19 -13
src/streamlit_app.py CHANGED
@@ -1,23 +1,30 @@
1
  import torch
2
  import torchaudio
3
  import os
4
- import streamlit as st
5
  from transformers import WhisperProcessor, WhisperForConditionalGeneration
6
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
 
7
 
8
  os.environ["TRANSFORMERS_CACHE"] = "/app/.cache/huggingface"
9
  os.environ["HF_HOME"] = "/app/.cache/huggingface"
10
  os.environ["TORCH_HOME"] = "/app/.cache/torch"
11
  hf_token = os.getenv("HateSpeechMujtabatoken")
 
 
 
 
 
 
12
 
13
- whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny", token=hf_token)
14
- whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny", token=hf_token)
15
- text_model = AutoModelForSequenceClassification.from_pretrained("GroNLP/hateBERT", token=hf_token)
16
- tokenizer = AutoTokenizer.from_pretrained("GroNLP/hateBERT", token=hf_token)
17
 
18
  def transcribe(audio_path):
19
  waveform, sample_rate = torchaudio.load(audio_path)
20
- input_features = whisper_processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt").input_features
 
 
 
 
21
  predicted_ids = whisper_model.generate(input_features)
22
  transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
23
  return transcription
@@ -31,23 +38,22 @@ def extract_text_features(text):
31
  def predict(audio_file, text_input):
32
  if not audio_file and not text_input:
33
  return "Please provide either an audio file or some text."
34
- if audio_file:
35
  audio_path = "temp_audio.wav"
36
  with open(audio_path, "wb") as f:
37
  f.write(audio_file.read())
38
  transcribed_text = transcribe(audio_path)
39
  prediction = extract_text_features(text_input or transcribed_text)
40
- if text_input:
41
- return f"Predicted: {prediction}"
42
- else:
43
- return f"Predicted: {prediction} \n\n(Transcribed: {transcribed_text})"
44
- else:
45
  prediction = extract_text_features(text_input)
46
  return f"Predicted: {prediction}"
47
 
48
  st.title("Hate Speech Detector")
 
49
  uploaded_audio = st.file_uploader("Upload Audio File (.mp3, .wav, .ogg, .flac, .opus)", type=["mp3", "wav", "ogg", "flac", "opus"])
50
  text_input = st.text_input("Or enter text:")
 
51
  if st.button("Predict"):
52
  result = predict(uploaded_audio, text_input)
53
- st.success(result)
 
1
  import torch
2
  import torchaudio
3
  import os
 
4
  from transformers import WhisperProcessor, WhisperForConditionalGeneration
5
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
6
+ import streamlit as st
7
 
8
  os.environ["TRANSFORMERS_CACHE"] = "/app/.cache/huggingface"
9
  os.environ["HF_HOME"] = "/app/.cache/huggingface"
10
  os.environ["TORCH_HOME"] = "/app/.cache/torch"
11
  hf_token = os.getenv("HateSpeechMujtabatoken")
12
+ def load_models():
13
+ whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
14
+ whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
15
+ text_model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
16
+ tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
17
+ return whisper_processor, whisper_model, text_model, tokenizer
18
 
19
+ whisper_processor, whisper_model, text_model, tokenizer = load_models()
 
 
 
20
 
21
  def transcribe(audio_path):
22
  waveform, sample_rate = torchaudio.load(audio_path)
23
+ input_features = whisper_processor(
24
+ waveform.squeeze().numpy(),
25
+ sampling_rate=sample_rate,
26
+ return_tensors="pt"
27
+ ).input_features
28
  predicted_ids = whisper_model.generate(input_features)
29
  transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
30
  return transcription
 
38
  def predict(audio_file, text_input):
39
  if not audio_file and not text_input:
40
  return "Please provide either an audio file or some text."
41
+ if audio_file is not None:
42
  audio_path = "temp_audio.wav"
43
  with open(audio_path, "wb") as f:
44
  f.write(audio_file.read())
45
  transcribed_text = transcribe(audio_path)
46
  prediction = extract_text_features(text_input or transcribed_text)
47
+ return f"Predicted: {prediction} \n\n(Transcribed: {transcribed_text})" if not text_input else f"Predicted: {prediction}"
48
+ elif text_input:
 
 
 
49
  prediction = extract_text_features(text_input)
50
  return f"Predicted: {prediction}"
51
 
52
  st.title("Hate Speech Detector")
53
+
54
  uploaded_audio = st.file_uploader("Upload Audio File (.mp3, .wav, .ogg, .flac, .opus)", type=["mp3", "wav", "ogg", "flac", "opus"])
55
  text_input = st.text_input("Or enter text:")
56
+
57
  if st.button("Predict"):
58
  result = predict(uploaded_audio, text_input)
59
+ st.success(result)