mojad121 commited on
Commit
a64833e
·
verified ·
1 Parent(s): a338c27

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +20 -32
src/streamlit_app.py CHANGED
@@ -1,29 +1,25 @@
1
- import os
2
- os.environ["TRANSFORMERS_CACHE"] = "/app/.cache/huggingface"
3
- os.environ["HF_HOME"] = "/app/.cache/huggingface"
4
- os.environ["XDG_CACHE_HOME"] = "/app/.cache"
5
- os.environ["XDG_CONFIG_HOME"] = "/app/.streamlit"
6
-
7
  import torch
8
  import torchaudio
9
  from transformers import WhisperProcessor, WhisperForConditionalGeneration
10
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
11
  import streamlit as st
 
 
 
 
 
12
 
13
- @st.cache_resource
14
  def load_models():
15
  whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
16
  whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
17
- text_model = AutoModelForSequenceClassification.from_pretrained("Hate-speech-CNERG/dehatebert-mono-english")
18
- tokenizer = AutoTokenizer.from_pretrained("Hate-speech-CNERG/dehatebert-mono-english")
19
  return whisper_processor, whisper_model, text_model, tokenizer
20
 
21
  whisper_processor, whisper_model, text_model, tokenizer = load_models()
22
 
23
  def transcribe(audio_path):
24
  waveform, sample_rate = torchaudio.load(audio_path)
25
- if waveform.shape[0] > 1:
26
- waveform = waveform.mean(dim=0, keepdim=True)
27
  input_features = whisper_processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt").input_features
28
  predicted_ids = whisper_model.generate(input_features)
29
  transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
@@ -32,34 +28,26 @@ def transcribe(audio_path):
32
  def extract_text_features(text):
33
  inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
34
  outputs = text_model(**inputs)
35
- prediction = outputs.logits.argmax(dim=1).item()
36
- return prediction
37
-
38
- def predict_hate_speech(audio_path=None, text=None):
39
- if text:
40
- text_input = text
41
- elif audio_path:
42
- transcription = transcribe(audio_path)
43
- text_input = transcription
44
- else:
45
- return "Please provide either audio or text input."
46
 
 
 
 
47
  prediction = extract_text_features(text_input)
48
  return "Hate Speech" if prediction == 1 else "Not Hate Speech"
49
 
50
  st.title("Hate Speech Detector with Audio and Text")
51
  audio_file = st.file_uploader("Upload an audio file (wav, mp3, flac, ogg, opus)", type=["wav", "mp3", "flac", "ogg", "opus"])
52
  text_input = st.text_input("Optional text input")
53
-
54
  if st.button("Predict"):
55
- if audio_file is not None:
56
- temp_path = "temp_audio.wav"
57
- with open(temp_path, "wb") as f:
58
- f.write(audio_file.read())
59
- prediction = predict_hate_speech(temp_path, text_input)
60
- st.success(prediction)
61
- elif text_input:
62
- prediction = predict_hate_speech(text=text_input)
63
  st.success(prediction)
64
  else:
65
- st.warning("Please provide at least audio or text input.")
 
 
 
 
 
 
 
1
  import torch
2
  import torchaudio
3
  from transformers import WhisperProcessor, WhisperForConditionalGeneration
4
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
5
  import streamlit as st
6
+ import os
7
+
8
+ os.environ["TRANSFORMERS_CACHE"] = "/app/.cache"
9
+ os.environ["HF_HOME"] = "/app/.cache"
10
+
11
 
 
12
  def load_models():
13
  whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
14
  whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
15
+ text_model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
16
+ tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
17
  return whisper_processor, whisper_model, text_model, tokenizer
18
 
19
  whisper_processor, whisper_model, text_model, tokenizer = load_models()
20
 
21
  def transcribe(audio_path):
22
  waveform, sample_rate = torchaudio.load(audio_path)
 
 
23
  input_features = whisper_processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt").input_features
24
  predicted_ids = whisper_model.generate(input_features)
25
  transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
 
28
  def extract_text_features(text):
29
  inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
30
  outputs = text_model(**inputs)
31
+ return outputs.logits.argmax(dim=1).item()
 
 
 
 
 
 
 
 
 
 
32
 
33
+ def predict_hate_speech(audio_path, text):
34
+ transcription = transcribe(audio_path)
35
+ text_input = text if text else transcription
36
  prediction = extract_text_features(text_input)
37
  return "Hate Speech" if prediction == 1 else "Not Hate Speech"
38
 
39
  st.title("Hate Speech Detector with Audio and Text")
40
  audio_file = st.file_uploader("Upload an audio file (wav, mp3, flac, ogg, opus)", type=["wav", "mp3", "flac", "ogg", "opus"])
41
  text_input = st.text_input("Optional text input")
 
42
  if st.button("Predict"):
43
+ if audio_file is not None or text_input:
44
+ audio_path = None
45
+ if audio_file is not None:
46
+ with open("temp_audio_input", "wb") as f:
47
+ f.write(audio_file.read())
48
+ audio_path = "temp_audio_input"
49
+
50
+ prediction = predict_hate_speech(audio_path, text_input) if audio_path else extract_text_features(text_input)
51
  st.success(prediction)
52
  else:
53
+ st.warning("Please provide either audio or text input.")