Update src/streamlit_app.py
Browse files- src/streamlit_app.py +29 -25
src/streamlit_app.py
CHANGED
@@ -1,14 +1,12 @@
|
|
1 |
import torch
|
2 |
import torchaudio
|
|
|
3 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
import streamlit as st
|
6 |
-
import os
|
7 |
-
|
8 |
os.environ["TRANSFORMERS_CACHE"] = "/app/.cache"
|
9 |
os.environ["HF_HOME"] = "/app/.cache"
|
10 |
|
11 |
-
|
12 |
def load_models():
|
13 |
whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
14 |
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
@@ -20,7 +18,11 @@ whisper_processor, whisper_model, text_model, tokenizer = load_models()
|
|
20 |
|
21 |
def transcribe(audio_path):
|
22 |
waveform, sample_rate = torchaudio.load(audio_path)
|
23 |
-
input_features = whisper_processor(
|
|
|
|
|
|
|
|
|
24 |
predicted_ids = whisper_model.generate(input_features)
|
25 |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
26 |
return transcription
|
@@ -28,26 +30,28 @@ def transcribe(audio_path):
|
|
28 |
def extract_text_features(text):
|
29 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
30 |
outputs = text_model(**inputs)
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
st.title("Hate Speech Detector with Audio and Text")
|
40 |
-
audio_file = st.file_uploader("Upload an audio file (wav, mp3, flac, ogg, opus)", type=["wav", "mp3", "flac", "ogg", "opus"])
|
41 |
-
text_input = st.text_input("Optional text input")
|
42 |
if st.button("Predict"):
|
43 |
-
|
44 |
-
|
45 |
-
if audio_file is not None:
|
46 |
-
with open("temp_audio_input", "wb") as f:
|
47 |
-
f.write(audio_file.read())
|
48 |
-
audio_path = "temp_audio_input"
|
49 |
-
|
50 |
-
prediction = predict_hate_speech(audio_path, text_input) if audio_path else extract_text_features(text_input)
|
51 |
-
st.success(prediction)
|
52 |
-
else:
|
53 |
-
st.warning("Please provide either audio or text input.")
|
|
|
1 |
import torch
|
2 |
import torchaudio
|
3 |
+
import os
|
4 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
import streamlit as st
|
|
|
|
|
7 |
os.environ["TRANSFORMERS_CACHE"] = "/app/.cache"
|
8 |
os.environ["HF_HOME"] = "/app/.cache"
|
9 |
|
|
|
10 |
def load_models():
|
11 |
whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
12 |
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
|
|
18 |
|
19 |
def transcribe(audio_path):
|
20 |
waveform, sample_rate = torchaudio.load(audio_path)
|
21 |
+
input_features = whisper_processor(
|
22 |
+
waveform.squeeze().numpy(),
|
23 |
+
sampling_rate=sample_rate,
|
24 |
+
return_tensors="pt"
|
25 |
+
).input_features
|
26 |
predicted_ids = whisper_model.generate(input_features)
|
27 |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
28 |
return transcription
|
|
|
30 |
def extract_text_features(text):
|
31 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
32 |
outputs = text_model(**inputs)
|
33 |
+
predicted_class = outputs.logits.argmax(dim=1).item()
|
34 |
+
return "Hate Speech" if predicted_class == 1 else "Not Hate Speech"
|
35 |
+
|
36 |
+
def predict(audio_file, text_input):
|
37 |
+
if not audio_file and not text_input:
|
38 |
+
return "Please provide either an audio file or some text."
|
39 |
+
if audio_file is not None:
|
40 |
+
audio_path = "temp_audio.wav"
|
41 |
+
with open(audio_path, "wb") as f:
|
42 |
+
f.write(audio_file.read())
|
43 |
+
transcribed_text = transcribe(audio_path)
|
44 |
+
prediction = extract_text_features(text_input or transcribed_text)
|
45 |
+
return f"Predicted: {prediction} \n\n(Transcribed: {transcribed_text})" if not text_input else f"Predicted: {prediction}"
|
46 |
+
elif text_input:
|
47 |
+
prediction = extract_text_features(text_input)
|
48 |
+
return f"Predicted: {prediction}"
|
49 |
+
|
50 |
+
st.title("Hate Speech Detector")
|
51 |
+
|
52 |
+
uploaded_audio = st.file_uploader("Upload Audio File (.mp3, .wav, .ogg, .flac, .opus)", type=["mp3", "wav", "ogg", "flac", "opus"])
|
53 |
+
text_input = st.text_input("Or enter text:")
|
54 |
|
|
|
|
|
|
|
55 |
if st.button("Predict"):
|
56 |
+
result = predict(uploaded_audio, text_input)
|
57 |
+
st.success(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|