mojad121 commited on
Commit
526e201
·
verified ·
1 Parent(s): b687a68

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +15 -17
src/streamlit_app.py CHANGED
@@ -5,22 +5,19 @@ from transformers import WhisperProcessor, WhisperForConditionalGeneration
5
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
6
  import streamlit as st
7
 
8
- def load_models():
9
- whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
10
- whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
11
- text_model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
12
- tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
13
- return whisper_processor, whisper_model, text_model, tokenizer
14
 
15
- whisper_processor, whisper_model, text_model, tokenizer = load_models()
 
 
 
16
 
17
  def transcribe(audio_path):
18
  waveform, sample_rate = torchaudio.load(audio_path)
19
- input_features = whisper_processor(
20
- waveform.squeeze().numpy(),
21
- sampling_rate=sample_rate,
22
- return_tensors="pt"
23
- ).input_features
24
  predicted_ids = whisper_model.generate(input_features)
25
  transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
26
  return transcription
@@ -34,22 +31,23 @@ def extract_text_features(text):
34
  def predict(audio_file, text_input):
35
  if not audio_file and not text_input:
36
  return "Please provide either an audio file or some text."
37
- if audio_file is not None:
38
  audio_path = "temp_audio.wav"
39
  with open(audio_path, "wb") as f:
40
  f.write(audio_file.read())
41
  transcribed_text = transcribe(audio_path)
42
  prediction = extract_text_features(text_input or transcribed_text)
43
- return f"Predicted: {prediction} \n\n(Transcribed: {transcribed_text})" if not text_input else f"Predicted: {prediction}"
44
- elif text_input:
 
 
 
45
  prediction = extract_text_features(text_input)
46
  return f"Predicted: {prediction}"
47
 
48
  st.title("Hate Speech Detector")
49
-
50
  uploaded_audio = st.file_uploader("Upload Audio File (.mp3, .wav, .ogg, .flac, .opus)", type=["mp3", "wav", "ogg", "flac", "opus"])
51
  text_input = st.text_input("Or enter text:")
52
-
53
  if st.button("Predict"):
54
  result = predict(uploaded_audio, text_input)
55
  st.success(result)
 
5
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
6
  import streamlit as st
7
 
8
+ os.environ["TRANSFORMERS_CACHE"] = "/app/.cache/huggingface"
9
+ os.environ["HF_HOME"] = "/app/.cache/huggingface"
10
+ os.environ["TORCH_HOME"] = "/app/.cache/torch"
11
+ os.environ["HF_TOKEN"] = "your_huggingface_access_token"
 
 
12
 
13
+ whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny", use_auth_token=True)
14
+ whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny", use_auth_token=True)
15
+ text_model = AutoModelForSequenceClassification.from_pretrained("GroNLP/hateBERT")
16
+ tokenizer = AutoTokenizer.from_pretrained("GroNLP/hateBERT")
17
 
18
  def transcribe(audio_path):
19
  waveform, sample_rate = torchaudio.load(audio_path)
20
+ input_features = whisper_processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt").input_features
 
 
 
 
21
  predicted_ids = whisper_model.generate(input_features)
22
  transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
23
  return transcription
 
31
  def predict(audio_file, text_input):
32
  if not audio_file and not text_input:
33
  return "Please provide either an audio file or some text."
34
+ if audio_file:
35
  audio_path = "temp_audio.wav"
36
  with open(audio_path, "wb") as f:
37
  f.write(audio_file.read())
38
  transcribed_text = transcribe(audio_path)
39
  prediction = extract_text_features(text_input or transcribed_text)
40
+ if text_input:
41
+ return f"Predicted: {prediction}"
42
+ else:
43
+ return f"Predicted: {prediction} \n\n(Transcribed: {transcribed_text})"
44
+ else:
45
  prediction = extract_text_features(text_input)
46
  return f"Predicted: {prediction}"
47
 
48
  st.title("Hate Speech Detector")
 
49
  uploaded_audio = st.file_uploader("Upload Audio File (.mp3, .wav, .ogg, .flac, .opus)", type=["mp3", "wav", "ogg", "flac", "opus"])
50
  text_input = st.text_input("Or enter text:")
 
51
  if st.button("Predict"):
52
  result = predict(uploaded_audio, text_input)
53
  st.success(result)