mojad121 commited on
Commit
4ef6d8e
·
verified ·
1 Parent(s): efbe09e

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +8 -6
src/streamlit_app.py CHANGED
@@ -1,19 +1,21 @@
1
  import torch
2
  import torchaudio
3
  import os
 
4
  from transformers import WhisperProcessor, WhisperForConditionalGeneration
5
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
6
- import streamlit as st
7
 
8
  os.environ["TRANSFORMERS_CACHE"] = "/app/.cache/huggingface"
9
  os.environ["HF_HOME"] = "/app/.cache/huggingface"
10
  os.environ["TORCH_HOME"] = "/app/.cache/torch"
11
- os.environ["HF_TOKEN"] = "your_huggingface_access_token"
 
 
12
 
13
- whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny", use_auth_token=True)
14
- whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny", use_auth_token=True)
15
- text_model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
16
- tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
17
 
18
  def transcribe(audio_path):
19
  waveform, sample_rate = torchaudio.load(audio_path)
 
1
  import torch
2
  import torchaudio
3
  import os
4
+ import streamlit as st
5
  from transformers import WhisperProcessor, WhisperForConditionalGeneration
6
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
 
7
 
8
  os.environ["TRANSFORMERS_CACHE"] = "/app/.cache/huggingface"
9
  os.environ["HF_HOME"] = "/app/.cache/huggingface"
10
  os.environ["TORCH_HOME"] = "/app/.cache/torch"
11
+ os.environ["HF_TOKEN"] = st.secrets["HF_TOKEN"]
12
+
13
+ hf_token = st.secrets["HF_TOKEN"]
14
 
15
+ whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny", token=hf_token)
16
+ whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny", token=hf_token)
17
+ text_model = AutoModelForSequenceClassification.from_pretrained("GroNLP/hateBERT", token=hf_token)
18
+ tokenizer = AutoTokenizer.from_pretrained("GroNLP/hateBERT", token=hf_token)
19
 
20
  def transcribe(audio_path):
21
  waveform, sample_rate = torchaudio.load(audio_path)