Update src/streamlit_app.py
Browse files- src/streamlit_app.py +8 -6
src/streamlit_app.py
CHANGED
@@ -1,19 +1,21 @@
|
|
1 |
import torch
|
2 |
import torchaudio
|
3 |
import os
|
|
|
4 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
-
import streamlit as st
|
7 |
|
8 |
os.environ["TRANSFORMERS_CACHE"] = "/app/.cache/huggingface"
|
9 |
os.environ["HF_HOME"] = "/app/.cache/huggingface"
|
10 |
os.environ["TORCH_HOME"] = "/app/.cache/torch"
|
11 |
-
os.environ["HF_TOKEN"] = "
|
|
|
|
|
12 |
|
13 |
-
whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny",
|
14 |
-
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny",
|
15 |
-
text_model = AutoModelForSequenceClassification.from_pretrained("
|
16 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
17 |
|
18 |
def transcribe(audio_path):
|
19 |
waveform, sample_rate = torchaudio.load(audio_path)
|
|
|
1 |
import torch
|
2 |
import torchaudio
|
3 |
import os
|
4 |
+
import streamlit as st
|
5 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
7 |
|
8 |
os.environ["TRANSFORMERS_CACHE"] = "/app/.cache/huggingface"
|
9 |
os.environ["HF_HOME"] = "/app/.cache/huggingface"
|
10 |
os.environ["TORCH_HOME"] = "/app/.cache/torch"
|
11 |
+
os.environ["HF_TOKEN"] = st.secrets["HF_TOKEN"]
|
12 |
+
|
13 |
+
hf_token = st.secrets["HF_TOKEN"]
|
14 |
|
15 |
+
whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny", token=hf_token)
|
16 |
+
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny", token=hf_token)
|
17 |
+
text_model = AutoModelForSequenceClassification.from_pretrained("GroNLP/hateBERT", token=hf_token)
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("GroNLP/hateBERT", token=hf_token)
|
19 |
|
20 |
def transcribe(audio_path):
|
21 |
waveform, sample_rate = torchaudio.load(audio_path)
|